NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Master of Technology Mechanical Engineering

First Year

(Effective from the Session: 2022-23)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology Mechanical Engineering <u>EVALUATION SCHEME</u> SEMESTER -1

S. N	Course Code	Subject	Р	eriod	ls	Eva	luatio	on Sche	emes	-	and Sester	Total	Credit
		Theory	L	Т	Р	C T	T A	Tot al	PS	ТЕ	PE		
1	AMTME0101	Simulation Modelling and Analysis	3	0	0	20	10	30	-	70	-	100	3
2	AMTME0102	Design of Experiments	3	0	0	20	10	30	-	70	-	100	3
3	AMTCC0101	Research Process and Methodology	3	0	0	20	10	30	-	70	-	100	3
4		Departmental Elective – I	3	0	0	20	10	30	-	70	-	100	3
5		Departmental Elective – II	3	0	0	20	10	30	-	70	-	100	3
6	AMTME0151	simulation Modelling and Analysis lab	0	0	4	-	-		20	-	30	50	2
7	AMTME0152	Industry 4.0 Lab	0	0	4	-	-		20	-	30	50	2
		Total	15	0	8	-	-		-	-	-	600	19
			AMTME		E0111		Geometric Design & Rapid Prototyping						typing
			AN	AMTME01		12		Ac	lvanc	ed He	at & Ma	ass Trans	fer
	Departmo	ental Elective-I	AN	итм	E01	13			Rene	wable	Energ	y System	
			AMTME0114				Reliability, Maintenance Management & safety						t & safety
			AN	ИТМ	E01	15				Turbo	Mach	ines	
			AN	ИТМ	E01	16		Ad	lvanco	ed Me	chanic	al Vibratic	ons
	Departme	ental Elective-II	AN	ИТМ	E01	17	Operations Research						
			AN	ИТМ	E01	18			Ad	vance	d I.C. E	Ingines	

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology Mechanical Engineering <u>EVALUATION SCHEME</u> SEMESTER -II

S. N	Course Code		Subject		Period	ls	Eva	aluati	ion Scl	neme		nd nester	Total	Credit
		Theory		L	Т	Р	C T	T A	Tot al	PS	ТЕ	PE	Total	
1	AMTME0201	Digital Ma Automation	nufacturing and n	3	0	0	20	10	30	-	70	-	100	3
2	AMTME0202	Composite	Materials	3	0	0	20	10	30	-	70	-	100	3
3		Departmen	Departmental Elective-III		0	0	20	10	30	-	70	-	100	3
4		Departmental Elective-IV		3	0	0	20	10	30	-	70	-	100	3
5		Departmental Elective-V		3	0	0	20	10	30	-	70	-	100	3
6	AMTME0251	Automation and Mechatronics Lab		0	0	4	-	-	-	20	-	30	50	2
7	AMTME0252	Composite	Materials Lab	0	0	4	-	-	-	20	-	30	50	2
8	AMTME0253	Seminar-I		0	0	2	-	-	-	50	-	-	50	1
		Total		15	0	10	-	-	-	-	-	-	650	20
C	Departmental Ele	ective-III	AMTME0211 AMTME0212 AMTME0213 AMTME0214	<u>2</u> 3			Moo A	dern dvan	Manu Iiced V	ıfactu Veldir	ring T ng Teo	it Anal echno chnolo ynami	logy gy	
			AMTME021	5	Advanced Mechanics of Solids									
	Departmental El	ective-IV	AMTME021	6	Optimization Techniques									
-			AMTME021	7	Artific	ial Inte	ellige	nce a	ind Ma	achine	Learr	ing(AI	ML)	
			AMTME021	8			Ma	anage	emen	t Infor	matic	on Syst	tem	
			AMTME021	9			F	lexib	le Ma	nufac	turing	l Syste	em	
	Departmental El	ective_V	AMTME022	0					Mad	chine	Visior	า		
	Departinental El		AMTME022	1			Ra	pid N	Manuf	actur	ing ar	nd Too	ling	
			AMTME0222		hhrev				rid Ve	ehicle	Tech	nology		

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

		M. TEC	H FIRST Y	(EAR				
Cours	e Code	AMTME0101			L	Т	Р	Credit
Cours	e Title	Simulation, Modell	ing & Analys	sis	3	0	0	3
Integrati	1	Basic of Mechanical	Engineering,	Electrical	Engine	erin	lg, D	ifferentiation,
		learn about the need of	f simulation a	nd differen	t statist	ical	mode	-1
		learn about Queue mo			i statist	icai	mou	-1.
		learn about queue mo		ion				
		learn about different fe						
		learn about Bond grap						
- 1		• 1	ontents / Sy	vllabus				
UNIT-	I In	troduction		y nuo us				09 hours
		a tool, advantages and d	lisadvantages of	simulation.	areas of	app	licatio	
statistical distributio	models: queui ons: Bernoulli di	cepts in discrete event si ng systems; inventory sy stribution; Binomial distrib distribution, Exponential G	ystems; reliabili bution; Geometr	ty and main ic distributior	tainabili 1, continu	ty, l 10us	imited	data, discrete
UNIT-	II Qu	ueuing Models and	d Random	Numbers	s			8hours
server ut Random generatin Random	ilization in G/C Number Gene ng random num Variate Gener	nism, queuing notations $G/1/\infty/\infty$ queues. eration: Properties of ra- abers, tests of random nu- ration: Inverse transfor- , Convolution Method, A	andom number umbers m technique, 1	rs, Pseudo ra Direct trans	andom 1 formatio	num	bers,	techniques of
UNIT-		put Modelling and			que			09 hours
Input M identifica	odelling And ation, Paramet	Validation: Steps in the er estimation, Goodne ion of simulation models	he developmen ss of Fit Tes	nt of mode				, Distribution
UNIT-	IV In	troduction to Sim	ulation soft	tware				08 hours
		erent simulation softw			lation	sof	tware	
package	s, MATLAB,	Basic operation in M.	ATLAB.					
UNIT-	V A	pplication of MAT	LAB					08 hours
Solving		elated Mechanical		Thermal, 1	Kinema	ıtic	of	Mechanism,
Optimiz	ation etc.							
Textbo	ooks:							
1. Simu	lation Modelli	ing and Analysis by La	aw and Keltor	n, Mc Graw	v Hill.			
2. Simu	lation Model I	Design& execution by	Fishwich, Pr	entice Hall				
3. Discr	ete event syste	em simulation by Ban	ks, Carson, N	elson and N	Vicol.			
2. MAT	LAB for Mec	hanical Engineers by	Rao V Dukki	i pati , Fairfi	eld Un	iver	sity	
Cours	e outcome:	· · · · · · · · · · · · · · · · · · ·						
Course	Modelling	Simulation and Anal	vsis					
1		ll be able to analyse d		tical model.				K3
2		Il be able toanalyse a d				lizat	tion	K3
3		Il be able to generate t	<u>^</u>					K2
		d on distribution.						
4	Students wi	ll be able to verify and	l validate a m	odel.				K4
5							1	
5	~~~~~	vill be able to simu	late mechani	ical systen	n using	g S1	mula	tion K4

Course	e Code	AMTME0102	L	Т	Р	Credit		
Course		Design of Experiments	3	0	0	3	-	
	quisites: Basi	° 1		•	•		-	
	e objective:	ics of statics					-	
Course		ective is to learn how to plan, design and	conduct ex	neri	ment	s efficiently	-	
1	and effectively							
2	, , , , , , , , , , , , , , , , , , ,	The objective is to analyze the resulting data to obtain objective conclusions.						
3	The objective of the Taguchi's method is to produce high quality product at low cost to							
3		the manufacturer						
4	e e	The objective of Signal-to-noise ratio is a measure used in science and engineering that						
т	compares the lev	vel of a desired signal to the level of backgr	round noise	э.				
		Course Contents / Syllabus						
UNIT-	I Introdu					09 hours	1	
		, Typical applications of Experimental design	n, Basic Prin	ncip	es, G	uidelines for		
		ncepts of random variable, probability, density						
	y, Concept of confi	lation, Measure of Central tendency; Mean dence level	median an	d m	ode,	Measures of		
UNIT-		mental design				8hours	-	
	-	inology: factors, levels, interactions, treatment	combination	ı, rai	ndom		1	
		or two factors and three factors. Three-level ex						
and three	factors, Factor eff	or two factors and three factors. Three-level ex fects, Factor interactions, Fractional factorial of						
and three composite	factors, Factor eff e designs	ècts, Factor interactions, Fractional factorial o				igns, Central	-	
and three composite	factors, Factor eff e designs III Analys	ects, Factor interactions, Fractional factorial c is and Interpretation Methods	design, Satu	rate	l Des	igns, Central 09 hours	-	
and three composite UNIT- Measures	factors, Factor eff e designs III Analys of variability, Rar	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott	design, Satu ting method	rateo	l Des	igns, Central 09 hours s of variance	-	
and three composite UNIT- Measures (ANOVA	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da	is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R tta	design, Satu ting method Regression a	rateo , Ar analy	l Des	igns, Central 09 hours of variance Mathematical	-	
and three composite UNIT- Measures (ANOVA models fro UNIT-	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi	Sects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott periments: YATE's algorithm for ANOVA, R atta ment Design Using Taguchi's Orthog	design, Satu ting method Regression a gonal Arr a	, Ar naly	l Des alysis	igns, Central 09 hours of variance Mathematical 08 hours		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of C	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays,	Sects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ata ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear	design, Satu ting method Regression a gonal Arra graphs and	, Ar naly	l Des alysis	igns, Central 09 hours of variance Mathematical 08 hours	-	
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of 0 Dummy le	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co	 Factor interactions, Fractional factorial of is and Interpretation Methods Inking method, Column effect method & Plotteriments: YATE's algorithm for ANOVA, Restance Ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear Impound factor method, Modification of linear set 	design, Satu ting method Regression a gonal Arra graphs and	, Ar naly	l Des alysis	igns, Central 09 hours of variance Mathematical 08 hours n assignment,		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of C Dummy la UNIT-	factors, Factor eff e designs Manalys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear a to Noise Ratio	design, Satu ting method Regression a gonal Arra graphs and graphs	, Ar unaly ays Inter	l Des alysis vsis, 1	igns, Central 09 hours s of variance Mathematical 08 hours assignment, 08 hours		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy le UNIT- Evaluation	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods aking method, Column effect method & Plott periments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear a to Noise Ratio oise. Signal to Noise ratios for static problems:	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the	rated , Ar analy ays Inter	alysis alysis, l action	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal-		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of 0 Dummy le UNIT- Evaluation the -bette	factors, Factor eff e designs of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the-	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear a to Noise Ratio	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the	rated , Ar analy ays Inter	alysis alysis, l action	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal-		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of 0 Dummy le UNIT- Evaluation the -bette arrays, par Textbo	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Ooks:	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods aking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ata ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear y to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design con- tegy, tolerance design strategy	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the oncepts, Tag	, Ar naly ays Inter	alysis rsis, 1 action ter ty 's inn	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of C Dummy la UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Ooks:	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods thing method, Column effect method & Plott beriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear s to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the oncepts, Tag	, Ar naly ays Inter	alysis rsis, 1 action ter ty 's inn	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of 0 Dummy la UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X.	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n pr-type, Larger-the- rameter design strate ooks: ntgomery, Design an	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods Taking method, Column effect method & Plott teriments: YATE's algorithm for ANOVA, B ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear g to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the oncepts, Tag Edition, 200	, Ar naly ays Inter e-bet guch 6, IS	1 Des alysis rsis, 1 action ter ty 's inn BN -	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048-		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of C Dummy la UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X. Madhav S	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Doks: Itgomery, Design an S. Phadke, Quality	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ita ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear a to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the oncepts, Tag Edition, 200	, Ar naly ays Inter e-bet guch 6, IS	1 Des alysis rsis, 1 action ter ty 's inn BN -	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048-		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy le UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X. Madhav S Jersey 076 Reference	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Doks: atgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear y to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679 Lochner, Joseph E. Matar, Designing for O	design, Satu ting method Regression a graphs and graphs and smaller-the oncepts, Tag Edition, 200 Hall PTR, E Quality - an	rated , Ar analy ays Inter e-bee guch 6, IS	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New extion Best of		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy le UNIT- Evaluation the -bette arrays, pair D.C. Mon X. Madhav S Jersey 076 Reference Taghuchi	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Doks: atgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ita ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear a to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679	design, Satu ting method Regression a graphs and graphs and smaller-the oncepts, Tag Edition, 200 Hall PTR, E Quality - an	rated , Ar analy ays Inter e-bee guch 6, IS	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New extion Best of		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy le UNIT- Evaluation the -bette arrays, pai Textbo D.C. Mon X. Madhav S Jersey 076 Reference Taghuchi 04124002	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Doks: atgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods Taking method, Column effect method & Plott teriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear y to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy and Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679 Lochner, Joseph E. Matar, Designing for O thods or Statistical Experimental Design, Ch	design, Satu ting method Regression a graphs and graphs and soncepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and	rated , Ar nnaly ays Inter e-bet guch 6, IS ngle	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc Il, 19	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New ction Best of 190, ISBN –		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy le UNIT- Evaluation the -bette arrays, pai Textbo D.C. Mon X. Madhav S Jersey 076 Reference Taghuchi 04124002 Philip J.	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Doks: ntgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met 200 Ross, Taguchi Te	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear y to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679 Lochner, Joseph E. Matar, Designing for O	design, Satu ting method Regression a graphs and graphs and soncepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and inction, Ort	rated , Ar nnaly ays Inter e-bet guch 6, IS ngle	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc Il, 19	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New ction Best of 190, ISBN –		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of 0 Dummy le UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X. Madhav S Jersey 070 Reference Taghuchi 04124002 Philip J. Parameter	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strat Ocks: ntgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met 200 Ross, Taguchi Te r and Tolerance Desi	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods aking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear y to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679 L Lochner, Joseph E. Matar, Designing for O thods or Statistical Experimental Design, Ch	design, Satu ting method Regression a gonal Arra graphs and graphs : Smaller-the oncepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and unction, Ort 0070539588	rated , Ar unaly ays Inter e-bec guch 6, IS ngle h Int	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc Il, 19 onal	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New ction Best of 190, ISBN –		
and three composite UNIT- Measures (ANOVA models fro UNIT- Types of 0 Dummy le UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X. Madhav S Jersey 070 Reference Taghuchi 04124002 Philip J. Parameter	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n rertype, Larger-the- rameter design strat Doks: ntgomery, Design au S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met 200 Ross, Taguchi Tec r and Tolerance Des outcome: After t	Eects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, B ta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear g to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th B Engineering Using Robust Design, Prentice B 137451679 L Lochner, Joseph E. Matar, Designing for O thods or Statistical Experimental Design, Ch echniques for Quality Engineering: Loss Fu sign, McGraw-Hill, 2nd Edition, 1996, ISBN: 0 he successful completion of the course, the stuc basic terms as used and the process of	design, Satu ting method Regression a graphs and graphs and graphs and smaller-the oncepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and unction, Ort 0070539588 dents will be developing	rated , Ar unaly ays Inter e-bee guch 6, IS ngle n Inta hog : able	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc Il, 19 onal e to:	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New ction Best of 190, ISBN – Experiments,	K2	
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy la UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X. Madhav S Jersey 076 Reference Taghuchi 04124002 Philip J. Parameter Course CO1	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n rr-type, Larger-the- rameter design strat Doks: ntgomery, Design au S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met 200 Ross, Taguchi Tec r and Tolerance Des outcome: After t Define the experimentati	Eects, Factor interactions, Fractional factorial of is and Interpretation Methods hking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, Reta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear a to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design contexp, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th H Engineering Using Robust Design, Prentice F 137451679 L. Lochner, Joseph E. Matar, Designing for O thods or Statistical Experimental Design, Ch echniques for Quality Engineering: Loss Fu sign, McGraw-Hill, 2nd Edition, 1996, ISBN: 0 the successful completion of the course, the stude basic terms as used and the process of on in scientific and engineering research pro- tempt of the course of the course of the course of the process of on in scientific and engineering research pro- tempt of the course o	design, Satu ting method Regression a graphs and graphs and graphs : Smaller-the oncepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and unction, Ort 0070539588 dents will be developing ojects	rated , Ar unaly ays Inter ce-bee guch 6, IS cngle fingle ingle sable g st	1 Des alysis rsis, 1 action ter ty 's inn BN - wood roduc Il, 19 onal e to: rategi	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours pe, Nominal- her and outer - 812651048- Cliffs, New ction Best of 090, ISBN – Experiments, c plans for		
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy le UNIT- Evaluation the -bette arrays, pair Textbo D.C. Mon X. Madhav S Jersey 076 Reference Taghuchi 04124002 Philip J. Parameter Course CO1 CO2	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strar oks: tgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met 200 Ross, Taguchi Tec r and Tolerance Des outcome: After t Define the experimentati Evaluate the p	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods aking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R tta ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear g to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design co tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679 L Lochner, Joseph E. Matar, Designing for O thods or Statistical Experimental Design, Ch echniques for Quality Engineering: Loss Fu sign, McGraw-Hill, 2nd Edition, 1996, ISBN: 0 he successful completion of the course, the stuce basic terms as used and the process of on in scientific and engineering research process	design, Satu ting method Regression a graphs and graphs and graphs and concepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and unction, Ort 0070539588 dents will be developing ojects d on factoria	rated , Ar inaly ays Inter e-bet guch 6, IS ngle 1 Ha thog s able g st all de	l Des alysis rsis, l action ter ty 's inn BN - wood roduc Il, 19 onal e to: rategi signs.	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours n assignment, 08 hours n assignment, 08 hours n assignment, 08 hours n assignment, Cliffs, New ction Best of 090, ISBN – Experiments, c plans for	K3,K4	
and three composite UNIT- Measures (ANOVA models free UNIT- Types of C Dummy la UNIT- Evaluation the -bette arrays, par Textbo D.C. Mon X. Madhav S Jersey 076 Reference Taghuchi 04124002 Philip J. Parameter Course CO1	factors, Factor eff e designs III Analys of variability, Rar) in Factorial Exp om experimental da IV Experi Orthogonal Arrays, evel Technique, Co V Signal n of sensitivity to n er-type, Larger-the- rameter design strar oks: tgomery, Design at S. Phadke, Quality 632,1989, ISBN: 01 e Books Robert H and Western Met 200 Ross, Taguchi Tec r and Tolerance Des outcome: After t Define the experimentati Evaluate the p	Tects, Factor interactions, Fractional factorial of is and Interpretation Methods aking method, Column effect method & Plott eriments: YATE's algorithm for ANOVA, R ata ment Design Using Taguchi's Orthog selection of standard orthogonal arrays, linear mpound factor method, Modification of linear g to Noise Ratio oise. Signal to Noise ratios for static problems: better type. Parameter and tolerance design contempts tegy, tolerance design strategy nd Analysis of Experiments, Wiley India, 5th F Engineering Using Robust Design, Prentice F 137451679 I. Lochner, Joseph E. Matar, Designing for O thods or Statistical Experimental Design, Ch echniques for Quality Engineering: Loss Fu sign, McGraw-Hill, 2nd Edition, 1996, ISBN: 0 he successful completion of the course, the stuck basic terms as used and the process of on in scientific and engineering research pro- performance of the research investigations based native designs for experimentation and carry	design, Satu ting method Regression a graphs and graphs and graphs and concepts, Tag Edition, 200 Hall PTR, E Quality - an hapman and unction, Ort 0070539588 dents will be developing ojects d on factoria	rated , Ar inaly ays Inter e-bet guch 6, IS ngle 1 Ha thog s able g st all de	l Des alysis rsis, l action ter ty 's inn BN - wood roduc Il, 19 onal e to: rategi signs.	igns, Central 09 hours s of variance Mathematical 08 hours n assignment, 08 hours n assignment, 08 hours n assignment, 08 hours n assignment, 08 hours n assignment, Cliffs, New ction Best of 090, ISBN – Experiments, c plans for	K2 K3,K4	

		M. TECH FIRST YEAR					
Course	Code	AMTCC0101	L	Т	Ρ	Crec	lit
Course	Title	Research Process & Methodology	3	0	0	3	
Course	object	ive:					
1	To unc	erstand the concept / fundamentals of research and the	ir ty	pes			
2	To und	erstand the methods of research design and steps of rese	earc	:h p	roces	S	
3	To understand the methods of data collection and procedure of sampling tech						
4		yse the data, apply the statistical techniques and unders	tan	d th	e con	cept o	f
5		esis testing erstand the types of research report and technical writing	~				
		: Basics of Statistics	g.				
		Course Contents / Syllabus					
UNIT	-T	Introduction to Research				8	hours
		tive and motivation of research, Types and approaches	of r	esea	arch.	Descri	ntive vs.
		lied vs. Fundamental, Quantitative vs. Qualitative,					
•		ls versus Methodology, significance of research, criteria c					I ,
UNIT		Research Formulation and Design					hours
		s and steps involved, Definition and necessity of researc	h pi	robl	em. I	mport	ance and
		rature review, locating relevant literature, Reliability of					
		the research problem, Literature Survey, Research De				•	•
design.			U				
UNIT	-III	Data Collection				8	hours
Classific	ation of	Data, accepts of method validation, Methods of Data	ı C	olle	ction,	Colle	ection of
primary	and sec	ondary data, sampling, need of sampling, sampling theor	y a	nd '	Techr	niques,	steps in
sampling	g design,	different types of sample designs, ethical considerations	in r	esea	arch.	-	-
UNIT	-IV	Data Analysis				8	hours
Processi	ng Oper	ations, Data analysis, Types of analysis, Statistical te	chn	ique	es an	d cho	osing an
appropria	ate stati	stical technique, Hypothesis Testing, Data processing	sof	twa	re (e.	g. SP	SS etc.),
statistica	1 infere	nce, Chi-Square Test, Analysis of variance (ANOV	A)	and	d co	variano	ce, Data
Visualiza	ation – N	Aonitoring Research Experiments, hands-on with LaTeX.					
UNIT	-V	Technical writing and Reporting of Research				8	hours
Types of	of resea	urch report: Dissertation and Thesis, research pap		rev	view	articl	e. short
		conference presentation etc., Referencing and referencing					
Indexing		ation of Journals and Impact factor,		ypes			Indexing-
<u> </u>	.,	COPUS/DBLP/Google Scholar/UGC-CARE etc. Significand	•				\mathcal{O}
		m, IPR- intellectual property rights and patent law, con					
		ated aspects of intellectual property rights (TRIPS); sch					
		gn of research paper, reproducibility and accountability.)		8	
<u>^</u>		me: Upon completion of the course, the student will b	e al	ole (to:		
CO 1		he concept / fundamentals for different types of research					K ₂
CO 1 CO 2		relevant research Design technique					K ₂ K ₃
CO 3		propriate Data Collection technique					K ₃
CO 4		e statistical analysis which includes various parametr tric test and ANOVA technique	ic	test	and	non-	K5
	Parame						L

CO 5 Prepare research report and Publish ethically.	K ₆
Text books	
1. C. R. Kothari, Gaurav Garg, Research Methodology Methods and Technique	es, New Age
International publishers, Third Edition.	
2. Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners,	2 nd Edition,
SAGE 2005.	
3. Deepak Chawla, NeenaSondhi, Research Methodology, Vikas Publication	
Reference Books	
1.Donald Cooper & Pamela Schindler, Business Research Methods, TMGH, 9th edition	on
2.Creswell, John W, Research design: Qualitative, quantitative, and mixed methods a	pproach
sage publications, 2013	

			M. TECH FIRST YEAR		
Co	ourse	e Code	AMTME0151	LTP	Credits
Co	ours	e Title	Simulation, Modelling & Analysis Lab	004	2
Co	urse	e objecti	ives:		
1	FLU	UENT, et	e fundamental knowledge on using various analytical to c., for Engineering Simulation.		
2	imp	prove the	rious fields of engineering where these tools can be ef output of a product.	-	
3			nowledge on how these tools are used in Industries by s as using these tools.	olving so	ome real
		quisites			
_	No	s snould n	ave basic knowledge of Engineering. LIST OF EXPERIMENTS (Total Eight to be perform	med)	
1	1	Study of	simulation software Like ARENA, MATLAB.		
2	2	Simulati	on of translational and rotational mechanical systems		
3	3	Simulati	on of Queuing systems		
4	1	Simulati	on of Manufacturing System		
5	5	Generati	ion of Random number		
(5	Modelli	ng and Analysis of Dynamic Systems		
7	7		on mass spring damper system		
8	8		on of hydraulic and pneumatic systems.		
9)		on of Job shop with material handling and Flexible manufa	acturing s	systems
1	0	Simulati	on of Service Operations		
Co	urse	e outcon	I		
CC	01		lent will be able to appreciate the utility of the tools like A T in solving real time problems and day to day problems.	ANSYS o	r K2
CC	D 2		hese tools for any engineering and real time applications.		K2
CC) 3	curricul	knowledge on utilizing these tools for a better projectum as well as they will be prepared to handle industry afidence when it matters to use these tools in their employr	problem	

		M. TECH FIRST YEAR	
	se Code	AMTME0152 L T P	Credit
Cours	se Title	Industry 4.0 LAB 0 0 4	2
Cours	se objective	es:	
1	Students v	will be able to understand and implement the concepts of Industry	4.0
2		students understand and implement the concepts of Industrial IOT	
3		arize students with concepts of Robotics, AI/ML and AR/VR Tech	
4		udents understand and implement the concepts Additive Manu	facturing and
	Reverse Eng	ineering.	
	equisites:		
	ts should hav	e basic knowledge of Engineering.	
S. No	LIST OF E	EXPERIMENTS (Total Eight to be performed)	
1		Smart Factory setup based on Industry 4.0	
2		ensing and Actuating systems used in Industrial IOT	
3	Familiarizat	tion with concept of IoT, Arduino/Raspberry Pi and perform nece	ssary
3	software ins	stallation	
4	Develop an	IoT based smart lock system for Motor cycle/Car	
5	Creating a r	model using Augmented Reality (AR/VR Technology)	
		atural Language Processing including Syntactic, Semantic, Discou	urse and
6	Pragmatic F		
	<u> </u>	earning Project using Python for Linear Regression analysis of fue	
7	consumptio		
8	-	Robot to perform Pick and place operation using a structured pro	arom
ð			-
9	-	Simulate the task of Pick the pencil from the magazine and draw	rectangle &
	Square		
10		nt of a designed model with given parameters on FDM RP System	
11	-	nt of a designed model with given parameters on SLA RP System	
12		point cloud data(3D model) of mechanical components using 3D	Scanning
12	Technology	7	
~			
	<u>se outcome</u>	1 1	
CO 2		e familiar with the concept of Industry 4.0	K ₂
CO 2		and and implement fundamentals of Industrial IOT	K ₂
CO S	B Practica Technol	illy implement the concepts of Robotics, AI/ML and AR logy.	/VR K ₂
CO 4	4 Learn a Enginee	and implement the concepts Additive Manufacturing and Revering.	verse K ₂

		M. TECH FIRST YEAR		
Cou	rse Code	AMTME0111	LTP	Credit
Cou	rse Title	Geometric Design & Rapid Prototyping	3 0 0	3
Соц	rse objective:			
1		edge on various Geometric Design & Rapid Proto Typi	ng so that	the students
1	*	n engineering industry applications.	ing so that	the students
2		nding of modelling and design based on component geo	metry	
3	v	nowledge on the design of various components.	Jineti y	
4		ledge and to solve problems associated with design and	ranid prot	otyping and
·	▲	ts on the latest technology to ensure computer aided main	A A	••••
		a good operating condition and at low maintenance cost		s una aosign
5		edge on prototyping systems as well as learn how to per		c procedures
	on a system.			procedures
Pre_	-requisites:			
110-	requisites.	Course Contents / Syllabus		
TINIT		v		4.1
UNI		Geometric Design- Introduction:		4 hours
	1	of CAD/CAM, Introduction to design process and ro	ole of com	puters in the
•	n process.			
		Analytical, Synthetic curves with advantages, Disadvan	•	*
		cometric modelling curves and surfaces, Representation		
	-	tions, Parametric curves and surfaces, Manipulations	of curves	and surfaces,
		fid point line, circle, ellipse algorithms.		
	T-II	Solid modelling:		12hours
		entals of solid modelling, Different solid representation		
Boun	idary representat	ion (B-rep), Constructive solid geometry (CSG),	Sweep re	epresentation,
		ng, Perspective, Parallel projection, Hidden line remova	al algorithr	
	T-III	Rapid Prototyping-Introduction:		8hours
		yping, Traditional Prototyping Vs. Rapid Prototyping		ssification of
-		Processes: Additive, Subtractive, Formative, Generic R	P process.	
	T-IV	Rapid Prototyping Process		8 hours
Proce	ess Physics, Too	oling, Process Analysis, Material and technological	aspects,	Applications,
limita	ations and com	parison of various rapid manufacturing processes	s. Photop	olymerization
·	• • • •	L), Microstereolithography, Powder Bed Fusion (Se		•
		melting (EBM)), Extrusion-Based RP Systems (Fused		
·	,,, ·	, Sheet Lamination (Laminated Object Manufacturi	•	
		Beam Deposition (Laser Engineered Net Shaping	(LENS),	Direct Metal
	osition (DMD)			
	T-V	CAD/CAM		8 hours
	A A	on, Data interfacing: formats (STL, SLC, CLI, RPI, LE		
		validity checks, repair procedures; Part orientation a	* *	•
		sign, Model Slicing algorithms and contour data o	rganization	n, direct and
adapt	tive slicing, Tool	path generation.		
p		After completion of this course students will be a	ble to	
	rse outcome:	Arter completion of this course students will be a		
	1 Explain the	concepts and underlying theory of modelling and the u lifferent engineering applications.		K1,K2
Cou	1 Explain the models in c	e concepts and underlying theory of modelling and the u	sage of	

CO 3	Understand and use techniques for processing of CAD models for rapid	
	prototyping.	
CO 4	Understand and use techniques for processing of CAD Understand and apply	K3, K4,
	fundamentals of rapid prototyping techniques.	K5
CO 5	Use current state-of-the-art CAD/CAM technology in research.	K3,K4

Text Books& Reference Books:

1. Chua C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific.

2. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer.

3. Noorani R, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons.

4. Computer Aided Engineering & Design Jim Browne New ATC International

5. The Engineering Database D.N. Chorafas and S.J. Legg Butterworths

6. Principles of CAD J Rooney &P Steadman Longman Higher Education

7. CAD/CAM H P Groover and E W Zimmers Prentice Hall

8. Computer Integrated Design and Manufacture D Bedworth, M Henderson & P Wolfe MacGraw Hill Inc.

	M.TECH FIRST YEAR		
de AMTME0	112	L T P	Credit
	d Heat and Mass Transfer	3 0 0	3
		I	
	undamental concepts of conduction and	l its application	8
	<u>^</u>	~ ~	
o understand and	demonstrate the principles of radiation a	and heat transfe	r phenomenon
	pasic concepts of mass transfer and its ap	pplications	
sic laws of Conduc			
Condu			8 hours
		conductivity an	
•		•	
	A ·		8 hours
		straight fins of	
•		-	<u> </u>
Radiat	ion		8 hours
diation principles	s, Diffuse surfaces, and the Lambert's	cosine law. Ra	adiation through
•			· • • •
		surfaces separat	ed by absorbing
	0		
			8 hours
		• •	
*			· ·
-			~ ~
	in turbulent flow, Eddy heat diffusivi		
	r. Prandti-Tavior. Von Karman and M		
	-,	lartineli's analo	nalogy between ogies, Turbulent
circular tubes.	-	lartineli's analo	ogies, Turbulent
circular tubes. Mass Ti	ransfer		ogies, Turbulent 8 hours
circular tubes. Mass Tr er: Definition, Ex	amples, Fick's law of diffusion, Fick's	a law as referre	8 hours d to ideal gases,
circular tubes. Mass Tr er: Definition, Ex Isothermal Equi-	ransfer amples, Fick's law of diffusion, Fick's molal counter diffusion of ideal gases	a law as referre s, Mass diffusi	8 hours d to ideal gases, vity, Gilliland's
circular tubes. Mass Tu er: Definition, Ex Isothermal Equi- thermal evaporat	ransfer amples, Fick's law of diffusion, Fick's molal counter diffusion of ideal gases ion of water and its subsequent diffus	a law as referre s, Mass diffusi	8 hours d to ideal gases, vity, Gilliland's
circular tubes. Mass Tr er: Definition, Ex Isothermal Equi-	ransfer amples, Fick's law of diffusion, Fick's molal counter diffusion of ideal gases ion of water and its subsequent diffus	a law as referre s, Mass diffusi	8 hours d to ideal gases, vity, Gilliland's
circular tubes. Mass Tr er: Definition, Ex Isothermal Equi- thermal evaporat Jumerical problem	ransfer amples, Fick's law of diffusion, Fick's molal counter diffusion of ideal gases ion of water and its subsequent diffus ns.	a law as referre s, Mass diffusi ion into dry ai	8 hours d to ideal gases, vity, Gilliland's
circular tubes. Mass Tu er: Definition, Ex Isothermal Equi- thermal evaporat Jumerical problem	ransfer amples, Fick's law of diffusion, Fick's molal counter diffusion of ideal gases ion of water and its subsequent diffus	a law as referre s, Mass diffusi ion into dry ai vill be able to	8 hours d to ideal gases, vity, Gilliland's r, Mass transfer
	Image: stand stan	Ite Advanced Heat and Mass Transfer jective: • o understand the fundamental concepts of conduction and o understand and demonstrate the principles of radiation arough radiation o study and identify the phenomenon in convection heat to o understand the basic concepts of mass transfer and its a sites: dge of Engineering Mechanics dge of Engineering Mechanics isite laws of Conduction, Convection and Radiation Conse Contents / Syllabus Q Conduction ional steady state conduction, with variable thermal of eat source, Local heat source in non-adiabatic plate, Therm Extended Surfaces urfaces-Review, Optimum fin of rectangular profile, so ofiles, Optimum profile, Circumferential fin of rectans. 2D steady state conduction, semi-infinite and finite nders and in infinite semi-cylinders, spherical shells, nsteady state conduction, Sudden changes in the surface d spheres using Groeber's and Heisler charts for plates, fluids. Radiation adiation principles, Diffuse surfaces, and the Lambert's ng media, Hottel's method of successive reflections, Geb diation through absorbing media, Logarithmic decreated f simple shaped gas bodies, Net heat exchange between station of luminous gas flames. Convection Heat transfer in laminar flow, free convection between circular tubes, fully developed flow, Velocity and therm l temperature and with constant heat flux, Forced extern velocity and temperature boundary layer equations, Ka	Ite Advanced Heat and Mass Transfer 3 0 0 jective: o understand the fundamental concepts of conduction and its applications of fins and study the design of fins o understand the applications of fins and study the design of fins o o understand and demonstrate the principles of radiation and heat transfer o understand the basic concepts of mass transfer and its applications o understand the basic concepts of mass transfer and its applications ittes: oge of Engineering Mechanics dge of Engineering Mathematics sisic laws of Conduction, Convection and Radiation Contrace Contents / Syllabus Conduction ional steady state conduction with variable thermal conductivity an eat source, Local heat source in non-adiabatic plate, Thermocouple conductions, Optimum fin of rectangular profile, straight fins of offiles, Optimum profile, Circumferential fin of rectangular profile, straight fins of offiles, Optimum profile, Circumferential fin of rectangular profile, straight state conduction, Sudden changes in the surface temperatures of a spheres using Groeber's and Heisler charts for plates, cylinders and s fluids. Radiation Image and the surfaces, and the Lambert's cosine law. Rage media, Hottel's method of successive reflections, Gebhart's unified r diation through absorbing media, Logarithmic decrement of radia f simple shaped gas bodies, Net heat exchange between surfaces separat diation of luminous gas flames. Convection

CO 2 Apply principles of heat transfer to develop mathematical models for uniform K ₃ , K	ŀ
and non-uniform fins	
Employ mathematical functions and heat conduction charts in tackling two K ₄ , K	;
CO 3 dimensional and three-dimensional heat conduction problems.	
CO 4 Analyze free and forced convection problems involving complex geometries K ₃ , K ₄	
with properboundary conditions.	
$CO 5$ Apply the concepts of radiation heat transfer for enclosure analysis. K_4	
CO 6 Understand physical and mathematical aspects of mass transfer. K ₁ , K	2
Text Books	
(1) Principals of Heat Transfer/Frank Kreith/Cengage Learning	
(2)Elements of Heat Transfer/E. Radha Krishna/CRC Press/2012	
(3)Heat Transfer/RK Rajput/S.Chand	
ReferenceBooks	
(1) Introduction to Heat Transfer/SK Som/PHI	
(2) Engineering Heat & Mass Transfer/Mahesh Rathore/Lakshmi Publications	
(3)Heat Transfer / NecatiOzisik / TMH	

		M. TECH FIRST YEAR				
Course (Code	AMTME0113 L 7	ГР	Credit		
Course 7	ſitle	Renewable Energy System3) ()	3		
Course o	bjectiv	/e:				
		idents understand the concept of renewable and non- renew	able er	nergy		
	ources.					
	utilization.					
	To make students understand biogas generation, and hydro-electric generation and its impact on environment.					
		idents able to identify wind energy as an alternate source of	anara	v and to		
		how it can be trapped.	energ	y and to		
		idents aware of the Concept of integration of conventional a	and not	n-		
		l energy resources and systems.	ina no	u		
Pre-requ						
		thermal Engineering.				
		Course Contents / Syllabus				
UNIT-I	Ι	ntroduction		8 hours		
	ion: En	ergy and Development; Energy demand and availabili				
		Nonconventional energy; Renewable and Non-renewable				
		pacts of conventional energy usage; Basic concepts of h	.			
useful for e						
UNIT-II		olar Energy Systems	81	hours		
LICCIO CI	hemical	tems: Solar radiations data; Solar energy collection, Stora				
	olar stora on and A	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems	affec	ting energy generation;		
Refrigerati	olar stora on and A	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems	affec Power	ting energy generation; 8 hours		
Refrigerati UNIT III Micro and power; Mid	olar stora on and A [N d Small cro, min	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec	affec Power	ting energy generation; 8 hours small hydro		
Refrigerati UNIT III Micro and power; Mic heads; Velo	olar stora on and A [N d Small cro, min ocity he	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Speciad turbines; Hydrams; Water-mill; Tidal power. 	affec Power	ting energy generation; 8 hours small hydro ines for low		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV	olar stora on and A I N d Small cro, min ocity hea 7 I	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems	affec Power	ting energy generation; 8 hours small hydro ines for low 8 hours		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass	olar stora on and A I N d Small cro, min ocity hea A Energy	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spect ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, m	affec Power and sial eng	ting energy generation; 8 hours small hydro ines for low 8 hours al and other		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass residues; (olar stora on and A I N d Small cro, min ocity hea A Energy Optimiza	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems	affec Power and sial eng	ting energy generation; 8 hours small hydro ines for low 8 hours al and other		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass residues; (olar stora on and A d Small cro, min ocity hea A Energy Optimiza gas; prod	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Speciad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technology 	affec Power and s al eng unicip	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V	olar stora on and A Market Small cro, min ocity hea A Continue Continue State Continue Continto Continto Continue Continue Continue Continue Continue Contin	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Speciad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technoloucer gas; Power alcohol from biomass; Power generation. 	affec Power and s al eng unicip nologie	ting energy generation 8 hours small hydro ines for low 8 hours al and other es; Cooking hours		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V	olar stora on and A Market Small cro, min ocity hea A Energy Dptimiza gas; prod V ergy Sy	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, m ation of bio-mass utilization, Bio mass conversion techn lucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems Stems: Wind data; Horizontal and vertical axis windm	affec Power and s al eng unicip nologie	ting energy generation 8 hours small hydro ines for low 8 hours al and other es; Cooking hours		
Refrigerati UNIT III Micro and power; Micheads; Velo UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V Wind End Economics	olar stora on and A d Small cro, min ocity hea A Energy Optimiza gas; prod V ergy Sy s of wind	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, m ation of bio-mass utilization, Bio mass conversion techn lucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems Stems: Wind data; Horizontal and vertical axis windm	affec Power and state and all eng nologie 8 1 iills; V	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V Wind End Economics Integrated	olar stora on and A M Small cro, min ocity hea A Detimiza gas; prod Softwing sof wing I Energy	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, m ation of bio-mass utilization, Bio mass conversion techn lucer gas; Power alcohol from biomass; Power generation. Vind Energy Systems Stems: Wind data; Horizontal and vertical axis windm d energy.	affec Power and s al eng unicip nologie 8 l iills; V non-c	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass I residues; (C fuels; Biog UNIT V Wind End Economics Integrated energy reso	olar stora on and A Market Small cro, min ocity hea A Small cro, min ocity hea A Small cro, min ocity hea A Small A Small C Small C Small C Small C Small C Small C Small C Small C Sm	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technolucer gas; Power alcohol from biomass; Power generation. Vind Energy Systems Stems: Wind data; Horizontal and vertical axis windmal energy. Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic 	affec Power and state and all eng unicip nologie 8 l iills; V non-c s.	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms; conventional		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V Wind End Economics Integrated energy reso	olar stora on and A Market Small cro, min ocity hea A min ocity hea A min ocity hea A min Senergy Optimiza gas; prod A min Senergy Sys of wince a sof wince a min Sources a Dutcom	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spectad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technolucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems Stems: Wind data; Horizontal and vertical axis windmatherergy. Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic e: After completion of this course students will be a 	affec Power and s al eng unicip nologie 8 l ills; V non-c s.	ting energy generation 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms		
Refrigerati UNIT III Micro and power; Midhads; Velocity beads; Velocity UNIT-IV Bio-mass residues; Control fuels; Biog UNIT V Wind End Economics Integrated energy reso Course o CO 1	olar stora on and A Market Small cro, min ocity hea ocity hea A Energy Optimiza gas; prod V ergy Sy s of wince I Energ ources an Ources an Perceive	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Speciad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems Stems: Wind data; Horizontal and vertical axis windmatherergy. Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic e: After completion of this course students will be a the concept of renewable and non-renewable energy 	affec Power and s al eng unicip nologie 8 l ills; V non-c s.	ting energy generation, 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms		
Refrigerati UNIT III Micro and power; Midhads; Velocity beads; Velocity UNIT-IV Bio-mass residues; C fuels; Biog UNIT V Wind End Economics Integrated energy reso Course o CO 1 P res	olar stora on and A Market Small cro, min ocity hea A Small cro, min ocity hea A Small Energy Dytimiza gas; prod Vergy Sy s of wince I Energy ources an Ources an Perceive esources	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Speciad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems Stems: Wind data; Horizontal and vertical axis windmatherergy. Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic e: After completion of this course students will be a the concept of renewable and non-renewable energy and systems. 	affec Power and states and states and eng unicip nologie 8 l iills; V non-c s. ble to y K2	ting energy generation 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms conventional		
Refrigerati UNIT III Micro and power; Midhads; Velocity heads; Velocity UNIT-IV Bio-mass residues; C fuels; Biog UNIT V Wind End Economics Integrated energy reso CO 1 P CO 2	olar stora on and A Market Small cro, min ocity hea A Small cro, min ocity hea A Small Cro, min ocity hea A Small Energy Sys as; prod Pergy Sys s of wince I Energy Sys ources an Perceive esources Recogniz	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, m ation of bio-mass utilization, Bio mass conversion techn ucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems&Integrated Energy Systems stems: Wind data; Horizontal and vertical axis windm d energy. y Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic e: After completion of this course students will be a the concept of renewable and non-renewable energy at a solar energy collection and conversion	affec Power and states and states and eng unicip nologie 8 l iills; V non-c s. ble to y K2	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms; conventional		
Refrigerati UNIT III Micro and power; Mid heads; Vel- UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V Wind End Economics Integrated energy reso CO 1 P re CO 2 R a	olar stora on and A I N d Small cro, min ocity hea A Energy Optimiza gas; prod S of wince I Energy Sy ergy Sy ergy Sy ergy Sy ergy Sy ergy Sy ergy Sy ergy Content Derceive esources an Derceive	 Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, mation of bio-mass utilization, Bio mass conversion technucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems stems: Wind data; Horizontal and vertical axis windmatherergy. y Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic e: After completion of this course students will be a the concept of renewable and non-renewable energy. 	affec Power and sial eng unicip nologie 8 l iills; V non-c s. ble to y K2 n K ₃ ,	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms; conventional , K3		
Refrigerati UNIT III Micro and power; Mid heads; Veld UNIT-IV Bio-mass I residues; C fuels; Biog UNIT V Wind End Economics Integrated energy reso CO 1 P re CO 2 R a CO 3 A	olar stora on and A M Small cro, min ocity hea Z Energy Optimiza gas; prod V ergy Sy s of wince I Energ ources at ources at Perceive esources Recogniz long-wit Apply th	Storage, (Li-ion, Li-Po, Lead Acid, salt water) factors age options, Solar water heating; Solar air heating; Solar Air-conditioning. Micro and Small Hydro Energy Systems Hydro Energy Systems: Resource assessment of micro i and small hydro power systems; Pump and turbine; Spec ad turbines; Hydrams; Water-mill; Tidal power. Bio-mass Energy Systems Systems: Availability of bio mass, agro, forest, animal, m ation of bio-mass utilization, Bio mass conversion techn ucer gas; Power alcohol from biomass; Power generation. Wind Energy Systems&Integrated Energy Systems stems: Wind data; Horizontal and vertical axis windm d energy. y Systems: Concept of integration of conventional and nd systems; Integrated energy system design and economic e: After completion of this course students will be a the concept of renewable and non-renewable energy at a solar energy collection and conversion	affec Power and sial eng unicip nologie 8 l iills; V non-c s. ble to y K2 n K ₃ ,	ting energy generation; 8 hours small hydro ines for low 8 hours al and other es; Cooking hours Vind farms; conventional		

CO 4	Categorize various windmills and their utilization based on their characterization.	K ₃ , K ₄
CO 5	Integrate conventional and non-conventional energy resources and systems for betterment of society.	K ₄
Text	Books	
1.	Energy Efficient Buildings in India Mili Majumdar Tata Energy Research	h Institute
2.	Renewable Energy Systems Simmoes Marcelo Godoy CRC Press	
3.	Renewable Energy Resources John Twidell Taylor and Francis	
Refer	enceBooks	
1.	Renewable Energy Sources and Their Environmental Impact Abbasi & A	Abbasi PHI
2.	Solar Energy - Principles of Thermal Collection and Storage by S P Suk	hatme
3.	Solar Engineering of Thermal Processes by J ADuffie and W A Beckman	1
4.	Principles of Solar Engineering by D Y Goswami and J F Kreider	
5.	Introduction to Sustainable Engineering by R L Rag and Leks	

		M. TECH FIRST YEAR				
Co	urse Code	AMTME0114	LTP	Credit		
Co	urse Title	Reliability, Maintenance Management & Safety	300	3		
Co	urse object	ive:	I			
1		idents able to understand the concept of reliability, its	componen	ts and		
		used to enhance it.	I			
2	To make stu	idents perceive the knowledge of maintainability, available	lability, an	d failure,		
along with its effect on quality.						
3	3 To get students able to integrate the concept of maintenance planning and replacement					
		he concept of inspection.				
4		idents able to use various monitoring techniques, and	its impact o	on		
_	reliability.		1 .	1. 1 .		
5		idents make aware of various safety aspects and hazar	ds associat	ed in plant		
	e-requisites	f Industrial engineering				
		Course Contents / Syllabus				
UN	IT-I	Reliability Engineering		8 hours		
Mai Intro off Typ	intainability, oduction, form among reliab bes of failure	Maintainability, Availability & Failure Analysis Availability & Failure Analysis: Maintainabilit nulae, Techniques available to improve maintainabilit ility, maintainability & availability, simple problems es, defects reporting and recording, Defect analys	ty & Ava y & availal , Defect go sis, Failur	oility, trade eneration –		
Equ		time analysis, Breakdown analysis, TA, FMEA, FME	CA.			
		Maintenance Planning and Replacement		8 hours		
Mea equi prev Mai failu Insp	aning and c ipment subje ventive repla intenance syst ure, Opportun pection decisi	anning and Replacement: Maintenance planning – lifference, Optimal overhaul/Repair/Replace main	ntenance j nal interva	policy for al betweer placement		
	vi ili iliailiteila	ct to breakdown, Replacement decisions – Optim cements of equipment subject to breakdown, tems, Fixed time maintenance, Condition based ma ity maintenance, design out maintenance, Total pro on – Optimal inspection frequency, non-destructive nce, Concept of terro technology.	ductive m	aintenance		
UN	IT-IV	cements of equipment subject to breakdown, tems, Fixed time maintenance, Condition based ma ity maintenance, design out maintenance, Total pro on – Optimal inspection frequency, non-destructive	ductive mainspection	aintenance , PERT & 8 hours		

diagnosis.		
UNIT V	Safety Aspects	8 hours
Safety Aspects:	Importance of safety, Factors affecting safety, Safety aspec	ts of site and
plant, Hazards	of commercial chemical reaction and operation, Instrume	ents for safe
operation, Safety	y education and training, Personnel safety, Disaster planning a	nd measuring
safety effectiven	ess, Future trends in industrial safety.	
Course outco	me: After completion of this course students will be ab	le to
CO 1	Perceive the concept of reliability, its components and techniques used in it.	K2, K3
CO 2	Incorporate maintainability, availability, and failure in quality.	K ₃ , K ₄
CO 3	Integrate maintenance planning, replacement, and inspection to quality.	K4, K5
CO 4	Make use of various monitoring techniques used.	K ₃ , K ₄
CO 5	Get knowledge on various safety aspects and hazards associated in various industries.	K4
Text Books	eliability Engineering L.S. Srinath Affiliated East West Press	
2.Maintainabilit	y and Reliability Handbook Editors: Ireson W.A. and C.F. Coo	mbs McGraw
Hill Inc.		
3.Failure Diagno	osis and Performance Monitoring L.F. Pau Marcel Dekker	
ReferenceBo		
	ntenance Management S.K. Srivastava S. Chand & Co Ltd.	
	of Industrial Maintenance Kelly and M.J. Harris Butterworth an	d Co.
	Replacement and Reliability A.K.S. Jardine Pitman Publishing	
	Anitainability: How to Design for Reliability and Easy Main	ntenance B.S
Dhillon Prentice		
5.maustriai Mai	ntenance Management S.K. Srivastava S. Chand & Co Ltd.	

l		M. TECH FIRSTYEAR		
Course Coo	le	AMTME0115 L T	P	Credit
Course Tit		Turbo Machines 3 0 0)	3
Course obj			-	
1		y the basics of turbomachinery		
2		y the energy transfer in nozzles and the design of steam turk	oine bl	ades
3		y the fundamentals and design of centrifugal compressors		
4		y the fundamentals and design of axial flow compressors		
5		y and analyse the design of axial flow gas turbine		
Pre-requisi		, , , , , , , , , , , , , , , , , , , ,		
		ineering Mechanics		
		ineering Mathematics		
		f thermodynamics		
Reviews of bas	ic laws of	f fluid mechanics		
		Course Contents / Syllabus		
UNIT-I	Fur	idamentals of Turbo Machines		8 hours
Classification	s, Appl	ications, Thermodynamic analysis, Isentropic flow.	Energ	
Efficiencies, S	Static an	d Stagnation conditions, Continuity equations, Euler's flow	v throu	gh variable
cross-sectiona	l areas, l	Unsteady flow in turbo machines		
UNIT II	Stea	am Nozzles		8 hours
Convergent a	and Cor	vergent-Divergent nozzles, Energy Balance, Effect of	back	pressure of
analysis. Desi	igns of 1	nozzles. Steam Turbines: Impulse turbines, Compounding	, Wor	k done and
Velocity trian	gle, Effi	ciencies, Constant reactions, Blading, Design of blade part	ssages,	Angle and
height, Secon	dary flov	v. Leakage losses, Thermodynamic analysis of steam turbin	es	
UNIT-III	Gas	b Dynamics		8 hours
Fundamental	thermod	ynamic concepts, isentropic conditions, mach numbers a	nd are	a, Velocity
		essure, Normal shock relation for perfect gas. Supersonic fl		
		k recoveries, Detached shocks, Aerofoil theory. Centrif		
• •	• •	gles and efficiencies, Blade passage design, Diffuser and j		•
		l Stodolas formula's, Effect of inlet mach-numbers, Pre whi		
UNIT IV	Axia	ll Flow Compressors	8	hours
Flow Analysis	s, Work	and velocity triangles, Efficiencies, Thermodynamic analys	sis. Sta	ge pressure
rise, Degree o	f reactio	n, Stage Loading, General design, Effect of velocity, Incide	ence, P	erformance
Cascade Anal				
Cascaue Anal	ysis: Ge	ometrical and terminology. Blade force, Efficiencies, Losse	es, Fre	e end force,
Vortex Blades	5.		es, Fre	e end force,
	5.	ometrical and terminology. Blade force, Efficiencies, Losse I Flow Gas Turbines		e end force, hours
Vortex Blades UNIT V	S. Axia		8	hours
Vortex Blades UNIT V Work done. V	5. Axia Velocity	al Flow Gas Turbines	8 Degree	hours of reaction,
Vortex Blades UNIT V Work done. V Zweifels relat	Axia Axia Velocity ion, Des	I Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D	8 Degree	hours
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free vor	Axia Axia Velocity ion, Des tex blad	al Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Corre	egree lations	of reaction, Secondary
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free vor Actuator disc	Axia Velocity ion, Des tex blad c, Theor	I Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Corre- e, Blade angles for variable degree of reaction.	egree lations	of reaction, Secondary
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free vor Actuator disc	Axia Velocity ion, Des tex blad c, Theor	I Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Correc e, Blade angles for variable degree of reaction. y, Stress in blades, Blade assembling, Material and c	egree lations	of reaction, Secondary
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free vor Actuator disc Performances	Axia Velocity ion, Des rtex blad c, Theor , Matchi	I Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Corre- e, Blade angles for variable degree of reaction. y, Stress in blades, Blade assembling, Material and c ng of compressors and turbines, Off design performance.	8 Degree lations	of reaction, Secondary
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free von Actuator disc Performances	S. Velocity ion, Des tex blad c, Theor , Matchi	Al Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Correl e, Blade angles for variable degree of reaction. y, Stress in blades, Blade assembling, Material and c ng of compressors and turbines, Off design performance. After completion of this course students will be able	8 Degree lations ooling	of reaction, Secondary of blades,
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free vor Actuator disc Performances Course out CO 1 H t	Axia Velocity ion, Des tex blad t, Theor , Matchi Come: Explain t ypes of 1	I Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Correct e, Blade angles for variable degree of reaction. y, Stress in blades, Blade assembling, Material and c ng of compressors and turbines, Off design performance. <u>After completion of this course students will be able</u> he working principles of turbomachines and apply it to va nachines	8 Degree lations ooling	bours of reaction, Secondary of blades, K2
Vortex Blades UNIT V Work done. V Zweifels relat flow, Free vor Actuator disc Performances Course out CO 1 H t	Axia Velocity ion, Des tex blad t, Theor , Matchi Come: Explain t ypes of 1	Al Flow Gas Turbines triangle and efficiencies, Thermodynamic flow analysis, D ign cascade analysis, Soderberg, Hawthrone, Ainley, Correl e, Blade angles for variable degree of reaction. y, Stress in blades, Blade assembling, Material and c ng of compressors and turbines, Off design performance. <u>After completion of this course students will be able</u> he working principles of turbomachines and apply it to variable	8 Degree lations ooling	of reaction, Secondary of blades,

	off-design conditions.	
CO 4	Analyse the design and calculate the design parameters for axial flow compressors.	K4
CO 5	Analyse the cascade design for axial flow gas turbines for various blades	K3, K4
Reference	e Books	
(1) Principle	es of Turbo Machines/DG Shepherd / Macmillan	
(2)Fundame	entals of Turbomachinery/William W Perg/John Wiley & Sons	
(3)Element	of Gas Dynamics/Yahya/TMH	
(4) Principle	es of Jet Propulsion and Gas Turbine/NJ Zucrow/John Wiley & Sons/Newyo	ork
TextBook	(S	
(1) Turbines	s, Pumps, Compressors/Yahya/TMH	
(2)Practice	on Turbo Machines/ G.Gopal Krishnan &D.Prithviraj/ Sci Tech Publishers,	Chennai
(3)Theory a	nd practice of Steam Turbines/ WJ Kearton/ELBS Pitman/London	
<u> </u>	<u>^</u>	

		M. TECH FIRSTYEAR				
Cou	rse Code	AMTME0116	LTP	Credit		
Cou	rse Title	Advanced Mechanical Vibrations	300	3		
Cou	rse objectiv	e:				
1		fferent types of vibration and mathematical ar	nalysis of single	degree		
		m under free vibration and damped vibration.		1.0 1		
2		e analysis of two-degree freedom system under	· .			
3		l principle and working of different types of vi y out exact and numerical analysis of multi de				
5	subjected to different types of vibration.					
4		e numerical methods to determine natural free	quencies of the b	beam and		
	bar under free	and forced vibrations.				
5		e non-linear vibrating system under undamped	d and forced vib	oration.		
	- requisites: knowledge of In	ndustrial engineering				
		Course Contents / Syllabus		0.1		
		troduction		8 hours		
		racterization of engineering vibration problem	ns, Review of si	ingle degree		
freed	lom systems wi	th free, damped and forced vibrations				
UN	T-II T	wo-degree of Freedom Systems		8 hours		
		edom Systems: Principal modes of vibration	n Spring couple			
coup	-	prced vibration of an undamped close couple				
Unda	amped vibration	n absorbers, Forced damped vibrations, Vibrat	-	ied systems,		
	*	· · ·	-	8 hours		
UNI	TIII M	n absorbers, Forced damped vibrations, Vibrat	tion isolation.	8 hours		
UNI Mult	IT III M ti-degree Free	n absorbers, Forced damped vibrations, Vibrat ulti-degree Freedom systems	tion isolation.	8 hours		
UNI Mult	IT III M ti-degree Free ems, Orthogona	n absorbers, Forced damped vibrations, Vibrat allti-degree Freedom systems edom systems: Eigen-value problem, Close	tion isolation.	8 hours far coupled and forced		
UNI Mult syste vibra	IT III M ti-degree Free ems, Orthogona ution systems, A	n absorbers, Forced damped vibrations, Vibrat Aulti-degree Freedom systems edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for	tion isolation.	8 hours far coupled and forced , Dunkerely,		
UNI Mult syste vibra Stode	IT III M ti-degree Free ems, Orthogona ution systems, A	n absorbers, Forced damped vibrations, Vibrat ulti-degree Freedom systems edom systems : Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite	tion isolation.	8 hours far coupled and forced , Dunkerely,		
UNI Mult syste vibra Stode coup	IT III M ti-degree Free ems, Orthogona ition systems, <i>A</i> ola and Holzer led and far cou	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems.	tion isolation.	8 hours far coupled and forced Dunkerely, od for close		
UNI Mult syste vibra Stode coup	IT III M ti-degree Free ems, Orthogona ation systems, A ola and Holzer led and far cou IT-IV Co	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems	tion isolation.	8 hours far coupled and forced Dunkerely, od for close 8 hours		
UNI Mult syste vibra Stode coup UNI	IT III M ti-degree Free ems, Orthogona otion systems, A ola and Holzer Ition led and far cou IT-IV Co Co tinuous system	n absorbers, Forced damped vibrations, Vibrat ulti-degree Freedom systems edom systems : Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by	tion isolation.	8 hours far coupled and forced Dunkerely, od for close 8 hours		
UNI Mult syste vibra Stode coup UNI Cont force	IT III M ti-degree Free Free ems, Orthogona Stion systems, A ola and Holzer Idea and Holzer iled and far cou IT-IV IT-IV Co tinuous system Stinuous system	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequer r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars	tion isolation. e coupled and free, damped ncy- Rayleigh's, e element metho y wave equatio	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and		
UNI Mult syste vibra Stode coup UNI Cont force	IT III M ti-degree Free Free ems, Orthogona Stion systems, A ola and Holzer Idea and Holzer iled and far cou IT-IV IT-IV Co tinuous system Stinuous system	n absorbers, Forced damped vibrations, Vibrat ulti-degree Freedom systems edom systems : Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by	tion isolation. e coupled and free, damped ncy- Rayleigh's, e element metho y wave equatio	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and		
UNI Mult syste vibra Stode coup UNI Cont force	IT IIIMti-degreeFreeems,Orthogonaation systems,Aola and HolzerIdled and far couIT-IVIT-IVCotinuous systemcoed vibrations ofnsient Vibration	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequer r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars	tion isolation.	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and		
UNI Syste vibra Stode coup UNI Cont force Trar	IT IIIMti-degreeFreeems,Orthogonaation systems,Aola and HolzerIled and far couIIT-IVCotinuous systemcoed vibrations ofasient VibrationTVNo	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars ons: Response to an impulsive, step and pulse	tion isolation. e coupled and free, damped ncy- Rayleigh's, e element metho y wave equatio input, Shock sp	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and ectrum 8 hours		
UNI Syste vibra Stode coup UNI Cont force Trar UNI	IT IIIMti-degreeFreeems,Orthogonaution systems,Aola and HolzerIdled and far couIT-IVIT-IVCotinuous systemcoed vibrations ofnsient VibrationT VNo-linearVibration	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequer r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed b beams/ bars ons: Response to an impulsive, step and pulse on-linear Vibrations	tion isolation. e coupled and free, damped ncy- Rayleigh's, e element metho y wave equatio input, Shock sp	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and ectrum 8 hours		
UNI Syste vibra Stode coup UNI Cont force Trar UNI Non-	IT IIIMti-degreeFreeems,Orthogonaution systems,Aola and HolzerIdled and far couIT-IVIT-IVCotinuous systemcoed vibrations ofnsient VibrationT VNo-linearVibration	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars ons: Response to an impulsive, step and pulse on-linear Vibrations ions: Non-linear systems, Undamped and matrix	tion isolation. e coupled and free, damped ncy- Rayleigh's, e element metho y wave equatio input, Shock sp	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and ectrum 8 hours		
UNI Syste vibra Stode coup UNI Cont force Trar UNI Non- linea	IT IIIMti-degreeFreeems,Orthogonaution systems,Aola and HolzerIdled and far couIT-IVIT-IVCotinuous systemcoed vibrations ofnsient VibrationT VNo-linearVibration	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars ons: Response to an impulsive, step and pulse on-linear Vibrations ions: Non-linear systems, Undamped and in Self-excited vibrations.	tion isolation.	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and ectrum 8 hours n with non-		
UNI Syste vibra Stode coup UNI Cont force Trar UNI Non- linea	IT III M ti-degree Free ems, Orthogona ition systems, A ola and Holzer Ition and Holzer led and far cou Itinuous system IT-IV Co tinuous system Co ed vibrations of Isient Vibration r spring forces, Insee outcome	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars ons: Response to an impulsive, step and pulse on-linear Vibrations ions: Non-linear systems, Undamped and in Self-excited vibrations. e: After completion of this course stude	tion isolation.	8 hours far coupled and forced Dunkerely, od for close 8 hours n, Free and ectrum 8 hours n with non-		
UNI Syste vibra Stode coup UNI Cont force Trar UNI Non- linea	IT III M ti-degree Free ems, Orthogona ation systems, A ola and Holzer Idea and far cou iled and far cou IT-IV Co tinuous system co ed vibrations of Isient Vibration r spring forces, Insee outcome 1 Demonstrat	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars ons: Response to an impulsive, step and pulse on-linear Vibrations ions: Non-linear systems, Undamped and in , Self-excited vibrations. e: After completion of this course stude	tion isolation.	8 hours far coupled and forced and forced b Dunkerely, b for close 8 hours n, Free and ectrum 8 hours n with non- e to he K2, K3		
UNI Syste vibra Stode coup UNI Cont force Trar UNI Non- linea	IT III M ti-degree Free ems, Orthogona ation systems, A ola and Holzer Idea and far cou iled and far cou IT-IV Co tinuous system co ed vibrations of Isient Vibration r spring forces, Insee outcome 1 Demonstrat	n absorbers, Forced damped vibrations, Vibrat [ulti-degree Freedom systems] edom systems: Eigen-value problem, Close ality of mode shapes, Modal analysis for Approximate methods for fundamental frequent r method, Method of matrix iteration, Finite pled systems. ontinuous systems ns: Forced vibration of systems governed by beams/ bars ons: Response to an impulsive, step and pulse on-linear Vibrations ions: Non-linear systems, Undamped and re- , Self-excited vibrations. e: After completion of this course stude te the different types of vibration a cally the single degree freedom system under	tion isolation.	8 hours far coupled and forced and forced b Dunkerely, b for close 8 hours n, Free and ectrum 8 hours n with non- e to he K2, K3		

	frequency for forced vibration of a two degree of freedom damped or	
	undamped system.	
CO 3	Apply the mathematical analysis of multi degree freedom system	K_4, K_5
_	subjected to different types of vibration to calculate natural frequency.	., .
CO 4	Apply the numerical methods and calculate natural frequencies of the	K ₃ , K ₄
	beam and bar under free and forced vibrations.	
CO 5	Compute the natural frequencies of non-linear vibrating system under	K4
	undamped and forced vibration.	
Text H	Books	
Theory	and practice of Mechanical Vibrations J.S. Rao and K. Gupta New Age Inter-	national
Mechar	nical Vibrations G.K. Groover Nem Chand & Brothers	
Mechar	nical Vibration Practice V. RamamurtiNarosa Publications	
Refer	enceBooks	
Mechar	nical Vibrations V.P. Singh Dhanpat Rai & sons	
	ok of Mechanical Vibrations R.V. Dukkipati& J. Srinivas Prentice Hall of Ind	lia
	<u> </u>	

		M. TECH FIRST YEAR	
Co	ourse Code	AMTME0117 L T P	Credit
	ourse Title	Operations Research 3 0 0	3
	URSE OBJECTI		5
1	Ability to underst	and and analyze managerial problems in industry so that they are able to us ls, staffing, and machines) more effectively.	se resources
2		mulating mathematical models for quantitative analysis of managerial prol	blems in
3		f Operations Research approaches and computer tools in solving real prob	lems in
4		dels for analysis of real problems in Operations Research.	
Pre	e-requisites		
	1	Course content /syllabus	
Un	nit-1 Int	roduction 8 I	Hours
		n and scope of OR; Techniques and tools; Model formulation; general of optimization problems; Optimization techniques.	l methods for
Un	nit-2 Lir	near Programming 8 H	Hours
Ass Inte	signment, transporta	fodels: Complex and revised simplex algorithms; Duality theorems, sensit ation and transhipment models; Traveling salesman problem as an Assignr c programming; Goal programming. Game Problems: Mini-max criterion zero sum game; Games by simplex dominance rules.	nent problem;
			Hours
exp		ms: Classification of queuing situations; Kendall's notation, Poisson service time distribution; Finite and infinite queues; Optimal service rates adustrial problems.	
Uŋ	nit-4 Dy	namic Programming 8 I	Hours
		g: Characteristic of dynamic programming problems (DPPs); Bellman's vith finite number of stages; Use of simplex algorithm for solving DPPs.	s principle of
			Hours
UN			Ivais
Nor Opt	0	ing: One dimensional minimization method; Unconstrained optimization uses characteristics of a constrained problem; Indirect methods; Search	n techniques;
Nor Opt met	timization technique thods.	es characteristics of a constrained problem; Indirect methods; Search	n techniques; and gradient
Nor Opt met	timization techniqu hods. C ourse Outcome	nes characteristics of a constrained problem; Indirect methods; Search s: -After the successful completion of the course, the students will be a	n techniques; and gradient ble to:
Nor Opt met	timization technique thods. Course Outcome understand the a build and solve	es characteristics of a constrained problem; Indirect methods; Search	n techniques; and gradient ble to: K2
Nor Opt met	timization technique thods. Course Outcome understand the a build and solve method.	es characteristics of a constrained problem; Indirect methods; Search s: -After the successful completion of the course, the students will be al pplication of OR and frame a LP Problem with solution – graphical. Transportation, Assignment and Game Model problems using appropria	n techniques; and gradient ble to: K2 ate K3
Nor Opt met	timization technique thods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro-	 as characteristics of a constrained problem; Indirect methods; Search s: -After the successful completion of the course, the students will be al pplication of OR and frame a LP Problem with solution – graphical. Transportation, Assignment and Game Model problems using appropria waiting line problems using appropriate method. oblems of replacement and implement practical cases of decision making 	ble to: K2 Ate K3 K3
Nor Opt met 1 2 3	timization technique hods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro- under different b analyses the pro-	s: -After the successful completion of the course, the students will be al pplication of OR and frame a LP Problem with solution – graphical. Transportation, Assignment and Game Model problems using appropria	ble to: K2 ate K3 K3 K4
Nor Opt met 1 2 3 4 5	timization technique hods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro- under different b analyses the pro-	es characteristics of a constrained problem; Indirect methods; Search s: -After the successful completion of the course, the students will be al pplication of OR and frame a LP Problem with solution – graphical. Transportation, Assignment and Game Model problems using appropria waiting line problems using appropriate method. oblems of replacement and implement practical cases of decision making usiness environments. bblems of unconstrained nonlinear programming. Knows the necessary a	ble to: K2 ate K3 K3 K4
Nor Opt met 1 2 3 4 5	timization technique hods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro- under different b analyses the pro- sufficient condit kt Books	s: -After the successful completion of the course, the students will be all pplication of OR and frame a LP Problem with solution – graphical. Transportation, Assignment and Game Model problems using appropria waiting line problems using appropriate method. oblems of replacement and implement practical cases of decision making usiness environments. oblems of unconstrained nonlinear programming. Knows the necessary a ions for the solution of unconstrained problems.	ble to: K2 ate K3 K3 K4
Nor Opt <u>(1</u> 2 3 4 5 Tex	timization technique hods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro- under different b analyses the pro- sufficient condit xt Books Operations Res	earch, H.A. Taha, Prentice Hall	ble to: K2 ate K3 K3 Mg K4
Nor Opt met 1 2 3 4 5 Tex 1 2	timization technique hods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro- under different b analyses the pro- sufficient condit xt Books Operations Res	s: -After the successful completion of the course, the students will be all pplication of OR and frame a LP Problem with solution – graphical. Transportation, Assignment and Game Model problems using appropria waiting line problems using appropriate method. oblems of replacement and implement practical cases of decision making usiness environments. oblems of unconstrained nonlinear programming. Knows the necessary a ions for the solution of unconstrained problems.	ble to: K2 ate K3 K3 Mg K4
Nor Opt met 1 2 3 4 5 Tex 1 2	timization technique hods. Course Outcomes understand the a build and solve method. build and solve v solve simple pro- under different b analyses the pro- sufficient condit kt Books Operations Res Engg. Optimiza ference Books	earch, H.A. Taha, Prentice Hall	ble to: K2 ate K3 K3 Mg K4

		M. TECH FIRST Y	EAR	
Cour	se Code	AMTME0118	L T P	Credit
Cour	se Title	Advanced I.C. Engines	3 0 0	3
Cour	se objectiv	e:		
1		and classify conventional, modern eng	gine technologies of I.	C. Engines.
2	To discuss a	and analyze various combustion pheno		
		nes and C.I. Engines.		
3		competence in performance analysis,	optimization, and cont	trol of IC
4	engines.	an insight about fuels, alternatives fue	la effect of engine ou	
4		an insight about fuels, alternatives fue nent and emission control methods.	ers, effect of engine ou	temissions
5		skill and acquire knowledge of moder	n engine technologies	and develop
5		mobility solutions.	in engine teennologies	und de velop
Pre-r	equisites:			
		ndustrial engineering		
		Course Contents / Syl	labus	
UNIT	[-] Ir	ntroduction		8 hours
Introdu	uction to diff	erent types of conventional and mode	rn I.C. Engine, Valve	arrangements,
	l cycles for er	• •		
UNI	Г-II С	ombustion of engines		8 hours
Comb	ustion in CI &	& SI engines, Knocking parameters, C	ombustion chambers c	onstruction
		esting and performance nance, Engine cooling & lubrication, ntrol.	, Effects of Superchar	8 hours
UNIT	Γ-IV F	uels		8 hours
	-	f fuels, Rating of fuels, Alternative f gines, pollution control devices, Blue		& lubrication,
UNIT	V M	lodern Technology		8 hours
Stratif	ied-charged	Engine, Marine & Aerospace eng	ines, Mixed-cycle er	ngines, HCCI
Engine	es, GDI Tec	hnology, E-Turbocharger, Variable	compression ratio en	gines, Hybrid
Engine	es, Hydrogen	and Fuel Cell Technology. Hybrid	power train concepts	s and designs
(series	, parallel).			
Cour	se outcome	e: After completion of this cour	se students will be ab	le to
CO	1 Explain technolo		and modern engine	K2, K3
CO	2 Explain	and understand the gas exchange pro	ocesses and motion of	K ₃ , K ₄
	charge i and CI e	n the cylinder and its effects on com	bustion process in SI	
CO		the performance, optimization, and c	ontrol of I.C. engines.	K4, K5
CO	4 Express treatmen	the fuels, alternatives fuels, emission	s formation and their	K _{3,} K ₄

CO 5	Explain and demonstrate modern engine technologies and develop smart future mobility solutions.	K4			
Text Bo	oks				
I.C Engin	I.C Engine Analysis & Practice by E.F Obert.				
I.C Engin	e by Ganesan, Tata McGraw Hill Publishers.				
A Course	in International Combustion Engines, by Mathur& Sharma, DhanpatR	ai& Sons.			
Referen	ceBooks				
I.C Engin	e, by R. Yadav, Central Publishing House, Allahabad				
Reciproca	ting and Rotary Compressors, by Chlumsky, SNTI Publications, Czec	hoslovakia			
Engineeri	ng Fundamentals of Internal Combustion Engines by W.W. Pulkrabek	, Pearson			

M. TECH FIRST YEAR					
Cou	rse Code	AMTME0201	LTP	Credit	
Cou	rse Title	Digital Manufacturing and Automation (DMA)	3 0 0	3	
Cou	rse objecti	ve:			
1		ding of the Development of CNC Technology and Industr	ry 4.0		
2	Learning a & 3-D prir	bout the CNC Programming, G & M Codes, CAM packa ating.	ges, Geometr	ical Design	
3	Smart man	e a detailed interpretation of Tooling for CNC Machines, ufacturing.	•		
4	Learning a	bout Robotics and Material Handling Systems, Automate	ed guided veh	icle systems.	
5		bout the Group Technology and FMS, Understanding and Concurrent engineering.	d Learning ab	out the CIM	
Pre-		Basics of Manufacturing			
	1	Course Contents / Syllabus			
UNI	T-I	Introduction to CNC Machine Tools:		6 hours	
		NC Technology-Principles and classification of CNC ma	chines, Adva		
	*	, Types of control, CNC controllers, Characteristics, Inter		•	
	concept. Ind				
UNI	T-II	CNC Programming:		8 hours	
Co-or	rdinate Syste	m, Fundamentals of APT programming, Manual part prog	gramming-str	ucture of	
part p	orogramme, O	G & M Codes, developing simple part programmes, Paran	netric prograr	nming,	
		r CNC machines-IDEAS, Unigraphics, Pro Engineer, CA			
		e of standard controllers-FANUC, Heidenhain and Sinum	eric control s	ystem.	
		gn. 3-D printing.		1	
	T-III	Tooling for CNC Machines:		6 hours	
coolin turnir	ng fed tooling	ials, Carbide inserts classification; Qualified, semi qualif g system, Quick change tooling system, Tooling system f l holders, Tool assemblies, Tool magazines, ATC mecha- ing.	or machining	centre and	
UNI	T-IV	Robotics and Material Handling Systems:		8 hours	
Introd Types Autor	duction to rol s of material	potic technology, and applications, Robot anatomy, mater handling equipment, Conveyer systems, Automated guid e/retrieval systems, Work-in-process storage, Interfacing	ed vehicle sys	unction, stems,	
UNI	T-V	Group Technology and Flexible Manufacturing S	System:	12 hours	
		y-part families, Parts classification and coding, Production	•		
	•	fits of Group Technology, Flexible manufacturing system		on, FMS	
		nputer control system, Planning for FMS, Applications ar		D ¹ 1 1	
		ated Manufacturing: Introduction, Evaluation of CIM a			
	-	d Automation (DMA), CIM hardware and software, Requ		-	
		stem, Database requirements, Concurrent Engineering-Pr	incipies, desi	gn and	
		ronment, advance modelling techniques.	-hl. ()		
Cou	rse outcon	1e: Upon completion of the course, the student will be	able to:		
CO 1		nd the Development of CNC Technology- C istics, Interpolators, Applications, DNC concept and Indu	CNC control stry 4.0	llers, K ₂	

CO 2 Learned about the CNC Programming, G & M Codes, CAM packages, Geometrica	K ₃
Design & 3-D printing.	
CO 3 Use detailed interpretation of Tooling for CNC Machines, Cutting tool materials, &	K3
Smart manufacturing.	
CO 4 Know about Robotics and Material Handling Systems, Robot anatomy, Conveye	· K5
systems, Automated guided vehicle systems, Interfacing handling and storage with	L
manufacturing.	
CO 5 Apply detailed interpretation of the GT and FMS, CIM, requirements of computer to	• K ₆
be used in CIM and DMA, Concurrent engineering.	
Text books	
1. Computer Numerical Control Machines P. Radhakrishnan New Central Book Agency	
2. CNC Machines M.S. Sehrawat and J.S. Narang Dhanpat Rai and Co.	
3. CNC Programming Handbook Smid Peter Industrial Press Inc.	
Reference Books	
1. Automation, Production systems and Computer M.P. Groover Prentice Hall of India I	ntegrated
Manufacturing	5
2. Computer Integrated Manufacturing Paul Ranky Prentice Hall of India	

		M. TECH FIRST YEAR		
Course Co	de	AMTME0202	LTP	Credit
Course Tit	tle	Composite Materials	300	3
Course ob	jective:			
1 7	To understa	and Composite materials and its applications.		
2 7	To understa	and the various types of composite materials		
3 7	To know th	e processing techniques of composite materials		
4 I	Determine	stresses and strains in composites.		
5 U	Understan	d the mechanical behaviour of laminated composi	te	
Pre-requise materials	ites:The	student should have knowledge of material scie Course Contents / Syllabus	ence and s	strength of
UNIT-I	Int	roduction to composites	8 h	ours
Functions of Thermoplast Reinforceme fibres, Carbo carbide fibre properties of	a Matrix ics), Meta nts/fibres: on fibres, s, Quartz f fibres.	ineering Materials, Concept of composite materia , Desired Properties of a Matrix, Polymer Mat 1 matrix, Ceramic matrix, Carbon Matrix, Glass Role and Selection or reinforcement materials, T Aramid fibres, Metal fibres, Alumina fibres, Fla and Silica fibres, Multiphase fibres, Whiskers, Fla Material properties that can be improved by for ering potential.	rix (Therr Matrix etc Ypes of fi Boron fibr Ikes etc., N	nosets and c. Types of bres, Glass es, Silicon Mechanical
UNIT-II	Cla	ssification of composites:	8 h	ours
composites (composites (Classificatio Polymer (FR	PMC), Ca MMC), C n based P) Compo	on Matrix Material: Organic Matrix compositions on matrix Composites or Carbon-Carbon Composites (CMC); on reinforcements: Fibre Reinforced Composite posites, Laminar Composites, Particulate Composite limitations of Composites	posites, M es, Fibre	etal matrix Reinforced
UNIT-III	FA	BRICATION OF COMPOSITES	8 h	ours
Autoclave c		s: Processing of Composite Materials: Ove	erall cons	iderations
Combined I materials, Re bagging film Nano Comp industrial app UNIT-IV Mechanical fraction. Uni	Fibre-Matricelease age sosite: Introduction of Properties directiona	ther Manufacturing Processes like filament we splant method, pultrusion, pre-peg layer, F rix performs, Manufacturing Techniques: Too ents, Peel plies, release films and fabrics, Bleede troduction to Nano Composites, Processing of finano composites. Perties of Composites a -Stiffness and Strength: Geometrical aspects – al continuous fibre, discontinuous fibres, Short fibres, Composites, Short fibres, Testing: Determination of stiffness	ibre-only oling and or and brea of nano c 8 h volume a ibre system	ompression performs, Specialty ather plies, omposites, ours and weight ms, woven
Combined I materials, Re bagging film Nano Comp industrial app UNIT-IV Mechanical fraction. Uni reinforcemen	resin-trans Fibre-Matrelease age sosite: Interplication of Properties directionants –Mecondi composition	pplant method, pultrusion, pre-peg layer, F rix performs, Manufacturing Techniques: Too ents, Peel plies, release films and fabrics, Bleede troduction to Nano Composites, Processing o of nano composites. perties of Composites a -Stiffness and Strength: Geometrical aspects –	ibre-only oling and or and brea f nano c 8 h volume a ibre system and str	ompression performs, Specialty ather plies, omposites, ours and weight ms, woven

Plate Stiffness and Compliance, Assumptions, Strains, Stress Resultants, Plate Stiffness and Compliance, Computation of Stresses, Types of Laminates -, Symmetric Laminates, Antisymmetric Laminate, Balanced Laminate, Quasi-isotropic Laminates, Cross-ply Laminate, Angleply Laminate. Orthotropic Laminate, Laminate Moduli, Hygrothermal Stresses

Course outcome: After completion of this course students will be able to					
CO 1	Understand various matrices and reinforcements used in composites	K ₂ , K ₃			
CO 2	Know about polymer matrix composites, metal matrix composites, ceramic matrix composites and its manufacturing and applications	K3			
CO 3	Introduce Fabrication techniques of composites	K3			
CO 4	Determine stresses and strains in composites.	K4			
CO 5	Understand the specifics of mechanical behaviour of layered	K4, K5			
	composites compared to isotropicmaterials				
Text bo	ooks				
R. M. Joi	R. M. Jones, Mechanics of Composite Materials, CRC Press				
M. Mukh	opadhyay, Mechanics of Composite Materials, University Press				
I. S. Dan Press	I. S. Daniel and Ori Ishai, Engineering Mechanics of Composite Material, Oxford University Press				
Referen	ice Books				
K K Chawla, Fibrous Materials, Cambridge University Press.					
Thermal	Analysis of Materials by R.F. Speyer, Marcel Decker.				
Engineer India.	Engineering Materials: Polymers, Ceramics and Composites A.K Bhargava Prentice Hall India.				

		M. TECH FIRST YEAR				
Cour	Course Code AMTME0251 LTP Cre					
Cour	se Title	Automation and Mechatronics Lab	0 0 4	2		
Cour	se objectiv					
1	-	he knowledge on advanced algebraic tools for the c	-			
2	-	he ability to analyze and design the motion for arti	•			
3	To develop a	n ability to use software tools for analysis and des	ign of robot	ic systems.		
		List of Experiments				
1	machine.	out workpiece setting and coordinate setting on V	ertical Millin	ng		
2	Surface ope	ration on Vertical Milling Machine.				
3	Machining	operation using canned cycle on Milling Machine.				
4	Learning al	pout workpiece setting and coordinate setting on T	urning Cent	er.		
5	Performing	Machining operation like Turning, Slotting, Facin	g.			
6		operation using canned cycle and Threading on La	the machine	•		
7		ace Operation on Kuka Kr-10 robot.				
8	-	welding operation using Kuka Kr-10 robot.				
9		controller (Arduino/ Raspberry)				
10	Controller in	nterfacing. ((Arduino/ Raspberry).				
Cour	se outcome	e: After completion of this course students	will be able	to		
CO1	Set machi	ne coordinate and perform machining operations.		K3		
CO2	Program r	obot and perform operations on it.		K4		
CO3	Design a d	controller (Arduino/ Raspberry) and programme it.		K3		
CO4	Interface t	he controller with machine.		K4		

Cou	rse Code	AMTME0252	L T P	Credit
Cour	rse Title	Composite Materials Lab	0 0 4	2
Cour	rse objectiv	ve:	·	•
1		and the metal matrix composite.		
2		and the various types of reinforcement.		
3		ne powder metallurgy techniques.		
4		e stresses and strains in composites.		
5	Understan	d the mechanical behaviour of laminated comp	posite	
		List of Experiments		
1	Preparation	n of Metal matrix Composites.		
2	Preparation	n of surface composite by friction stir processir	ıg	
3	Study of To	ensile strength and young's modulus of MMCs	•	
4		model on 3D printer by using glass fiber as a r erial of nylon.	einforcement m	aterial into a
5	Preparation	n of composite by powder metallurgy technique	es.	
6	Study of Fl	lexural strength of MMCs.		
7	Study of H	ardness of MMCs.		
8	Impact stre	ength analysis of MMCs		
9	Preparation	n of Al-SiC composites by stir casting method.		
10	-	icrostructure, hardness and density of Al-SiC of	composite	
	<u> </u>	-	*	
Cou	rse outcom	e: After completion of this course stude	ents will be able	e to
(CO1 Pr	repare metal matrix composite.		K2
CO1 D				1/2

CO1	Prepare metal matrix composite.	K2
CO2	Demonstrate the friction stir processing.	K3
CO3	Demonstrate the powder metallurgy techniques.	K3
CO4	Determine stresses and strains in composites.	K2

		M. TECH FIRST YEAR				
Cou	rse Code	AMTME0211	LTP	Credit		
Cou	rse Title	Advanced Finite Element Analysis	300	3		
Coui	rse Objective	es: The students should be able to				
1	Understand the fundamental concepts and different approaches used in Finite Element method.					
2	axi-symmet	I the application of plane stress- strain problem and use of t tric, heat transfer and fluid flow problems.				
3	plane eleme					
4	Understand	d and demonstrate the mesh generation used in FEA analysis	s for design and eva	luation		
5	Understan	d and command the practical application of finite elements ag problems through the use of FEM packages software.	nt method to solve	e realistic		
l	UNIT-I I	Introduction to Finite Difference Method		8HOUR		
1 (Natural co-or Convergence	l formulation of FEM, Variational and Weighted residu rdinate system, Element and global stiffness matrix and patch test, Higher order elements.	, Boundary con	ditions, Erro		
1	UNIT-II	Application to plane stress and plane strain problems	5	8 HOUF		
	Application to plane stress and plane strain problems, Axi-symmetric and 3D bodies, Plate be problems with isotropic and anisotropic materials, Structural stability, Other applications e.g., conduction and fluid flow problems.					
-		· ·	ty, Other applica	tions e.g., H		
Ċ	conduction ar	· ·	ty, Other applica	tions e.g., H		
l I	conduction arUNIT-IIIIdealization	nd fluid flow problems.		8 HOUR		
c l l r	conduction ar UNIT-III I Idealization c naterially	nd fluid flow problems. Idealization of stiffness of stiffness of beam elements in beam-slab problems,		8 HOUR		
	conduction arUNIT-IIIIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealizationIdealization	nd fluid flow problems. Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems	, Applications of	8 HOUE the method 8 HOUE		
	conduction ar UNIT-III Idealization Idealization Idealization UNIT-IV Organization computer grap	nd fluid flow problems. Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems Organization of the Finite Element programmer of the Finite Element programmer, Data preparation	, Applications of	8 HOUF the method 8 HOUF		
	conduction arUNIT-IIIIIdealizationIIdealizationIIdealizationIUNIT-IVIOrganizationIcomputer gragIUNIT-VIFEM an esser	nd fluid flow problems. Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems Organization of the Finite Element programmer of the Finite Element programmer, Data preparation phics, Numerical techniques, 3D problems	Applications of	8 HOUE the method 8 HOUE eration throu 8 HOUE		
	conduction arUNIT-IIIIdealizationIdealizationIdealizationIdealizationUNIT-IVOrganizationcomputer grayUNIT-VIFEM an essenexisting comp	nd fluid flow problems. Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems Organization of the Finite Element programmer of the Finite Element programmer, Data preparation phics, Numerical techniques, 3D problems FEM an essential component of CAD ntial component of CAD, Use of commercial FEM pac	Applications of	8 HOUE the method 8 HOUE eration throu 8 HOUE		
	conduction ar UNIT-III I Idealization c idealization c unitrily o UNIT-IV O Organization c computer gray unitriv UNIT-V I FEM an esser existing comp Course Outco Appl	nd fluid flow problems. Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems Organization of the Finite Element programmer of the Finite Element programmer, Data preparation phics, Numerical techniques, 3D problems FEM an essential component of CAD ntial component of CAD, Use of commercial FEM pac- plete designs, Comparison with conventional analysis.	, Applications of n and mesh gene kages, Finite elen	8 HOUF the method 8 HOUF eration throu 8 HOUF nent solution		
	conduction ar UNIT-III I Idealization c idealization c idealization c uniterially non i UNIT-IV I Organization c computer grap i UNIT-V I FEM an essen c existing comp c Course Outcourse CO1 Appl probl Appl CO2 symm	Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems Organization of the Finite Element programmer of the Finite Element programmer, Data preparation phics, Numerical techniques, 3D problems FEM an essential component of CAD ntial component of CAD, Use of commercial FEM pac- plete designs, Comparison with conventional analysis.	Applications of n and mesh gene kages, Finite elen ve realistic engir global equation f	8 HOUF the method 8 HOUF eration throut 8 HOUF nent solution neering K2, for axi- K3		
	conduction ar UNIT-III I Idealization contaction idealization contaction unit-IV I Organization computer gray UNIT-IV I FEM an esser existing comp Course Outco CO1 Appl probl CO2 symm strain CO3 Appl	Idealization of stiffness of stiffness of beam elements in beam-slab problems, n-linear problems Organization of the Finite Element programmer of the Finite Element programmer, Data preparation phics, Numerical techniques, 3D problems FEM an essential component of CAD ntial component of CAD, Use of commercial FEM pace plete designs, Comparison with conventional analysis. comes: The students would be able to ly the fundamental concepts and approaches to solv lems. y the fundamental concepts of boundary conditions to metric, heat transfer and fluid flow problems and solve those	Applications of n and mesh gene kages, Finite elen ve realistic engir global equation f e displacements, str	8 HOUF the method 8 HOUF eration throut 8 HOUF enent solution neering K2, for axi- ess and K3		

	Develop proficiency in the application of the finite element method (modelling, analysis,	K4, K5
CO5	and interpretation of results) to realistic engineering problems through the use of a major	
	commercial general-purpose finite element code.	

Tex	t Books
1	The Finite Element Method O.C. Zienkiewicz and R.L. Taylor McGraw Hill
2	An Introduction to Finite Element Method J. N. Reddy McGraw Hill
3	Finite Element Procedure in Engineering Analysis K.J. Bathe McGraw Hill
4	Finite Element Analysis C.S. Krishnamoorthy Tata McGraw Hill
Refe	erences Books:
1	Concepts and Application of Finite Element Analysis R.D. Cook, D.S. Malcus and M.E. Plesha John Wiley
2	Introduction to Finite Elements in Engineering T.R Chandragupta and A.D. Belegundu Prentice Hall India
3	Finite Element and Approximation O.C. Zenkiewicy& Morgan

		M. TECH FIRST YEAR		
Course Cod	le	AMTME0212	LTP	Credit
Course Title	e	Modern Manufacturing Technology	300	3
Course obje	ective:		••••	
		stand the non-traditional manufacturing process		
		stand the concept of ultrasonic machining.		
		be the electrical discharge machining		
		be the electrochemical machining and hybrid machin	ing	
		stand the unconventional welding and forming.	0	
Pre-requis				
		Course Contents / Syllabus		
UNIT-I		Introduction:		7 hours
Need of No	on-Tradi	tional Machining Processes, ClassificationBased of	on Energy,	Mechanism
source of en	nergy, tr	ansfer media and process, Process selection Based	on Physica	l Parameters
shapes to be	machine	ed, process capability and economics, Overview of all	processes.	
UNIT-II		Ultrasonic Machining		8 hours
Ultrasonic	Machin	ing: Principle- Transducer types, Concentrat	tors, Abra	asive Slurry
ProcessPara	meters, '	Tool Feed Mechanism, Advantages and Limitations	, Applicati	ons. Abrasive
Jet Machinin	ng: Proc	ess- Principle, Process Variables – Material Remov	al Rate, Ac	lvantages and
Limitations,	Applica	tions. Water Jet Machining: Principle, Process Va	riables, Ad	lvantages and
Limitations,	Practica	lApplications, Abrasive water jet machining process	•	
UNIT-III		Electrical Discharge Machining		8hours
Electrical Di	ischarge	Machining: Mechanism of metal removal, Dielectric	Fluid, Flus	hingmethods
Electrode M	aterials,	Spark Erosion Generators, Electrode Feed System,	Material R	emoval Rate
ProcessPara	meters, '	Tool Electrode Design, Tool wear Characteristics of	Spark Ero	ded Surfaces-
		itations, Practical Applications. Electrical Discharge		
Principle, W	Vire Fee	d System, Advantages and Limitations - Practica	al applicati	ons, Electror
	ining, pl	asma arc machining, laser beam machining		
UNIT-IV		Chemical, Electrochemical and Hybrid Machir	ning	8 hours
		Process		
		Process: material removal mechanism, process para		
		achining process: Material Removal Mechanism	n, process	parameters
applications,			1 1.	
		process: principle of unconventional hybrid	d machin	ing process
	ical grin	ding, electrochemical spark machining.		
UNIT-V		Advanced Welding and forming Techniques		8 hours
		xplosive welding, Diffusion bonding, High freque		tion welding
	•	Electron beam welding, Plasma arc welding, Laser w	•	1. C .
		energy rate forming, explosive forming, ele	ectrohydrau	llic forming
electromagn	ette torn	ning, incremental forming processes.		
Course ou	tcome	After completion of this course students will	be able to	
CO 1	underst	and the concepts of modern manufacturing technolog	gy	K1,K2
CO 2	Apply	the concept of mechanical processes such as	ultrasonic	K3, K4

	machining, AJM,WJM	
CO 3	Understand the concept of electrochemical machining process.	
CO 4	Understand the concept of unconventional welding processes.	K3, K4, K5
CO 5	Apply the concept of unconventional metal forming process.	K3,K4
Books:		

1. P.C Pandey And H.S. Shan, "Modern Machining Process", Tata Mc Graw – Hill Publishing Company Limited, New Delhi, 2007.

2. V.K. Jain, "Advanced Machining Process", Allied Publishers Pvt Limited 200.

3. Amitabha Bhattacharyya, "New Technology", The Institution of Engineers, India

4. HMT Bangalore, "Production Technology", Tata Mc Graw–Hill Publishing Company Limited, New Delhi, 2006.

5. Hassan El – Hofy "Advanced machining Processes" MC Graw-Hill, 2005.

		M. TECH FIRST YEAR			
Cours	se Code	AMTME0213	LTP	Credit	
Cours	se Title	Advanced Welding Technology	300	3	
	se objectiv				
1					
		in engineering industry applications.			
2		erstanding of heat flow and temperature distribution of	on weld c	omponents	
		eld geometry		-	
3		the knowledge on the design of welded joints and the	quality co	ontrol of	
	weldments.				
4	*	knowledge and to solve problems associated with failu		*	
		the latest technology to ensure welded structure are m	aintained	in good	
5		ondition and at low maintenance cost. nowledge on robotic welding systems as well as learn	how to p	arform	
5		lures on a system.	now to p	CHOIIII	
Pro_r	equisites:				
110-1	equisites.	Course Contents / Syllabus			
UNIT	TI Wal	Ŷ.		1 hours	
		ding Metallurgy:	<u> </u>	4 hours	
		ed with other fabrication processes, Classification of			
		e and its characteristics; Effects of alloying eleme			
	•	els, stainless steel, cast iron, and aluminum and tita			
testing	standards,	Hydrogen embrittlement, Lamellar tearing, residu	al stress	es and its	
measu	rement, heat	transfer and solidification, Analysis of stresses in we	elded stru	ctures, Pre	
and po	st welding h	eat treatments, Metallurgical aspects of joining, Con-	ditions of	soldering,	
		g of materials		0	
UNIT	-II Wel	d Design & Quality Control:		12 hours	
Weldir		red with other fabrication processes, Classification of	f welding	processes;	
		e and its characteristics; Effects of alloying eleme			
		els, stainless steel, cast iron, and aluminium and tit			
	•	Hydrogen embrittlement, Lamellar tearing, residu		•	
		transfer and solidification, Analysis of stresses in we			
		eat treatments, Metallurgical aspects of joining, Con-			
		g of materials.		solucing,	
UNIT	-	lern Trends in Welding:		8 hours	
		xplosive welding, Diffusion bonding, High frequency	v inductio		
		Electron beam welding, Plasma arc welding, Laser w		n weiding,	
UNIT		air Welding and Reclamation:		8 hours	
		ts of repair, aspects to be considered for repai	r weldin		
economics, repair welding procedures for components made of steel casting and cast iron, half bead, temper bead techniques, usage of Ni base filler metals. Types of wear, wear					
resistant materials, selection of materials for various wear applications; reclamation					
		s, selection of welding process for reclamation	, 1		
UNIT		tics in Welding:		8 hours	
		applications in welding, Programming of welding ro			
		t welding, New generation of welding robots, Self-a			
		oots for car body welding, Microelectronic weld			
-	,		0	0,	

Efficiency of robotics in welding.

CO 1	Identify and understand the concepts of welding	K1,K2
CO 2	Analyze peak temperatures, HAZ stresses and to prevent distortions	K3, K4
CO 3	Analyze and predict the life of weld joints subjected to fatigue and evaluate the effect of stress concentration on fatigue life of such joints.	K4
CO 4	Selection of repair welding and apply techno-economics for practical problems.	K3, K4, K5
CO 5	Use appropriate safety precautions while programming and operating the robot system	K3,K4
Books		

1. Advanced Welding Processes Nikodaco&Shansky MIR Publications

2. Welding Technology and Design VM Radhakrishnan New Age International

3. Source Book of Innovative welding Processes M.M. SchwarizAmerican Society of Metals (Ohio)

4. Advanced Welding Systems, Vol. I, II, III J. CornuJaico Publishers

5. Manufacturing Technology (Foundry, Forming and Welding) P.N. Rao Tata McGraw Hill

6. Welding principles and practices by Edward R. Bohnart, Mc. Graw Hill Education, 2014.

7. Welding and Welding technology, Richard L little, Mc. Graw Hill Education

8. Welding processes and Technology – Dr.ParmarRS

9. Welding processes and Technology – O.P Khanna

10. Foundry, Forming and Welding, P.N.Rao 2nd Edition TMH

		M. TECH FIRST YEAR		
Cour	se Code	AMTME0214	LTP	Credit
Cour	se Title	Computational Fluid Dynamics (CFD)	3 0 0	3
Cours	e objective:			·
This co	ourse enable	s students to		
1.		rovide brief introduction of Computational Fluid Dyn sis of fluid mechanics and heat transfer related problem		hed with the
		Course Contents / Syllabus		
UNIT	-I INT	RODUCTION		8 hours
Introd	uction. Cons	ervation equation, Mass Momentum and Energy	equations.	
		on and general description.	1 ,	
UNIT		ndary and initial conditions		8 hours
		various types of equation, Parabolic, Elliptic,	Boundary	and initial
		ew of numerical methods		
UNIT	-III Fini	e difference methods		8 hours
UNIT- Solutio	-IV Solu	surface treatment, Accuracy of F.D. method. tion of finite difference equations difference equations; Iterative methods; Matrix in	version me	8 hours
		plitting, Fast Fourier Transform applications		thods, AD
UNIT	-V Phas			
Phase	change pro	e change problems		8 hours
functio		te change problems plems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method	ase change	8 hours nterpolation problems
functio		blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method	ase change	8 hours nterpolation problems
functio Differe	ent approach Course Ou	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method	ase change	8 hours nterpolation problems
functio Differe	ent approach Course Ou Understand	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method atcome:	ase change	8 hours nterpolation problems method.
function Differed CO1 CO2	ent approach Course Ou Understand Apply boun	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method itcome: the various governing equations related to CFD.	ase change d, Enthalpy	8 hours nterpolation problems method.
function Differed CO1 CO2 CO3	ent approach Course Ou Understand Apply boun Apply Finit	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method tecome: the various governing equations related to CFD. dary condition & initial conditions.	ase change d, Enthalpy	8 hours nterpolation problems method. K2 K3
function Different CO1	ent approach Course Ou Understand Apply boun Apply Finit Evaluate the	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method attome: the various governing equations related to CFD. dary condition & initial conditions. e Difference and Finite Volume methods in CFD model	ase change d, Enthalpy	8 hours nterpolation problems; method. K2 K3 K3
CO1 CO2 CO3 CO4 CO5	ent approach Course Ou Understand Apply boun Apply Finit Evaluate the Understand of Authors	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method attome: the various governing equations related to CFD. dary condition & initial conditions. e Difference and Finite Volume methods in CFD model performance of fluid dynamics model. the various governing equations related to CFD.	ase change d, Enthalpy	8 hours nterpolation problems; method. K2 K3 K3 K3
function Differed CO1 CO2 CO3 CO4 CO5 Name 1	ent approach Course Ou Understand Apply boun Apply Finit Evaluate the Understand of Authors Computati	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method atteme: the various governing equations related to CFD. dary condition & initial conditions. e Difference and Finite Volume methods in CFD model performance of fluid dynamics model. the various governing equations related to CFD.	ase change d, Enthalpy	8 hours nterpolation problems; method. K2 K3 K3 K3
function Differed CO1 CO2 CO3 CO4 CO5 Name 1 2	ent approach Course Ou Understand Apply boun Apply Finit Evaluate the Understand Of Authors Computati Principles	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method ttome: the various governing equations related to CFD. dary condition & initial conditions. e Difference and Finite Volume methods in CFD model performance of fluid dynamics model. the various governing equations related to CFD.	ase change d, Enthalpy	8 hours nterpolation problems method. K2 K3 K3 K3
function Differed CO1 CO2 CO3 CO4 CO5 Name 1	ent approach Course Ou Understand Apply boun Apply Finit Evaluate the Understand of Authors Computati Principles Radiative I	blems, Rayleigh-Ritz, Galerkin and Least square nd two-dimensional elements, Applications. Ph es for moving boundary; Variable time step method atteme: the various governing equations related to CFD. dary condition & initial conditions. e Difference and Finite Volume methods in CFD model performance of fluid dynamics model. the various governing equations related to CFD.	ase change d, Enthalpy	8 hours nterpolation problems method. K2 K3 K3 K3

		M. TECH FIRST YEAR		
Course	e Code	AMTME0215	L T P	Credit
Course		Advanced Mechanics of Solids	300	3
	objective:			
	<u> </u>	s students to		
2.	Solve adv	vanced solid mechanics problems using classica	al methods	
3.		nd behaviour of machine and structure under va		conditions
4.		nd hardening rules and different elastic constant	Ų	
		, anisotropic, hyper elastic and viscoelastic		
5.	Understa	nd boundary value problem which is applicable	e not only in so	olid mechanics
		n heat transfer, fluid mechanics and acoustic di		
6.		nd principle of virtual work and time dependen		
7.		rse also aims at creation of an environment		
		ed to solve problems on advanced solid me	chanics and in	n this way to
	improve	their solving skills.		
		Course Contents / Syllabus		
UNIT-I		DUCTION		8 hours
		minaries: Scalars, vectors and matrix variab		
		esian tensors and their algebra, coordinate tra		
		order tensors, elements of tensor calculus		
		s' and Green's), principal value theorem, ei	genvalues and	eigenvectors,
		order tensor.	1 > / /	
		nation: Types of forces (point, surface and bo		
		Cauchy's relation and its proof, conserva		
		equilibrium equations, symmetry of stress to		
		and the associated planes, 3D Mohr's circl ctahedral planes, hydrostatic and deviatoric st		
		ors and their properties.	iess, mst and	second 1 lola-
UNIT-I		matics of Deformation		0 1
				8 hours
		formation: Material and spatial co-ordinates		
		on; deformation and displacement gradients, C ny's small strain tensor and the rotation tensor,		
		and sign convention, principal strains and		
		aximum shear strain, volumetric strain, strain c		
UNIT-I		titutive Modelling		8 hours
		ling: Thermodynamic principles, first and second	and law of the	
		e's law for isotropic materials, elastic con		
		elastic and viscoelastic material models, st		
		plastic materials, flow and hardening rules.		, constitutive
UNIT-I		dary Value Problems		8 hours
		Problems in Linear Elasticity: Field equation	s and bounda	
		Beltrami-Michell stress compatibility condition		
		ain) and solution strategies.	s, 2D approxim	nations (plane
UNIT-V		ational Principles in Solid Mechanics:		8 hours
		les in Solid Mechanics: Elements of variation	nal calculus. e	
		Lagrange equation and its application, type		
		l work, Principle of total potential energy as		
		d, time-dependent problems and Hamilton's pri		
6,,,			1	

		Course Outcome:		
CO	1	Students who successfully complete this course obtains advanced information on Advanced Mechanics of Solids and will be able to	K2	
CO	2	Solve mechanics problem using matrix, vector and use element of tensor calculus.	K3	
CO.	3	Learn about the elastic and plastic behaviour of material and evaluate stress invariants, principal stresses and their directions	K3	
CO4	4	Determine strain invariants, principal strains and their directions	K3	
CO	CO5 Understand the theory of elasticity including strain/displacement, Hooke's law for isotropic material, elastic constants and their relationships			
Nar	ne of Au	thors/ Books / Publisher		
1		I.H., "Elasticity Theory Applications and Numerics", Elsevier Acaden	nic Press.	
2	Boresi, A.P., Sidebottom, O. M., "Advanced Mechanics of Materials", 5th Ed., John Wiley and Sons			
3	2	A.K., "Mechanics of Solids", PHI Learning Private Limited		
4	Timoshenko, S.P., and Goodier, J.M., "Theory of Elasticity", 3rd Ed., McGraw Hill			
5	Srinath, L.S., "Advanced Mechanics of Solids", Tata McGraw Hill Education Private Limited			
6	6 Fung, Y.C., "Foundations of Solid Mechanics", Prentice Hall Inc.			

M. TECH FIRST YEAR				
Course Code	AMTME0216	LTP	Credit	
Course Title	Optimization Techniques	300	3	
Course Objectiv	es: The students should be able to		·	
1	To introduce various optimization techniques i.e. classical, linea1programming, transportation problem, simplex algorithm, dynamiprogramming			
2	Constrained and unconstrained optimization tech optimizing an electrical and electronic engineering c real world situations.	-	-	
3	3 To explain the concept of Dynamic programming and its applications to project implementation.			
4	4 To introduce various Advanced optimization techniques i.e. integer an geometric programming, genetic algorithm and simulated annealing			

UNIT – I Introduction

8 HOURS

Introduction and Classical Optimization Techniques: Statement of an Optimization problem, design vector, design constraints, constraint surface, objective function, objective function surfaces, classification of Optimization problems. Classical Optimization Techniques: Single variable Optimization, multi variable Optimization without constraints, necessary and sufficient conditions for minimum/maximum, multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers, Multivariable Optimization with inequality constraints, Kuhn – Tucker conditions.

UNIT-II Linear Programming

8 HOURS

Linear Programming: Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm. Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method – testing for optimality of balanced transportation problems.

UNIT-III Unconstrained Nonlinear Programming

8 HOURS

Unconstrained Nonlinear Programming: One dimensional minimization. methods, Classification, Fibonacci method and Quadratic interpolation method Unconstrained Optimization Techniques: Univariant method, Powell's method and steepest descent method.

UNIT-IV	Dynamic programming	8 HOURS

Dynamic programming: Evolutionary algorithms: Genetic Algorithm, concepts of multiobjective optimization, Markov Process, Queuing Models

UNIT-V	Advanced optimization techniques	8 HOURS
--------	----------------------------------	---------

Advanced optimization techniques: integer and geometric programming, genetic algorithm, simulating annealing, optimization software's.

Cour	rse Outcomes: The students would be able to				
CO	describe the need of optimization of engineering systems	K2			
CO2	2 understand optimization of mechanical systems and formulate the optimization problems.				
CO3	apply classical optimization techniques, linear programming, simplex algorithm, transportation problem	К3			
CO4	apply unconstrained optimization and constrained non-linear programming and dynamic programming	K4			
COS	Understand the advanced optimization techniques.	K3			
1 2 REF	 Singiresu S. Rao, Engineering Optimization: Theory and Practice by John Wiley a 4th edition, 2009. H. S. Kasene& K. D. Kumar, Introductory Operations Research, Springer (India), I 2004 ERENCE BOOKS: 				
4	George Bernard Dantzig, Mukund Narain Thapa, "Linear programming", Springer operations research 3rd edition, 2003.	series in			
5	H.A. Taha, "Operations Research: An Introduction", 8th Edition, Pearson/Prent 2007.	tice Hall,			
6	Kalyanmoy Deb, "Optimization for Engineering Design – Algorithms and Examples", PHI Learning Pvt. Ltd, New Delhi, 2005.				

		M. TECH FIRST YEAR					
Cours	se Code	AMTME0217	L T P	Credit			
Cours	se Title	Artificial Intelligence and Machine Learning (AIML)	300	3			
Cours	se object	tives:		1			
1	1 To introduce the basic concepts, theories and techniques of Artificial intelligence.						
2		luce basic concepts and applications of Machine learning	•				
3	Help stud	lents to learn the application of AI / Machine learning					
	equisites						
Studen	ts should	have basic knowledge computers, general engineering an	d mathema	atics.			
		Course Contents / Syllabus					
UNIT	-I	FUNDAMENTALS OF AI	8	hours			
- Int	roduction	to AI, History of AI, Intelligent Systems, Types of Intelli	igence				
_ ^	A	and Research Areas of AI					
- Ag	ents and E	Environments					
UNIT		SEARCH TECHNIQUES AND KNOWLEDGE REPRESENTATION		hours			
		Search, Types of search -BFS, DFS, Bidirectional Search	, Heurisitc	search -			
		g, Beam Search Best First, A* search algorithm. Representation, Relational knowledge, Knowledge repres	entation as	logic			
	•	twork, Frame based knowledge.		logic,			
UNIT		SCOPE OF AI	8	hours			
- Na	tural Lang	uage Processing					
1 4	pert Syster						
	zzy Logic	•					
	ural Netw		10				
UNIT		INTRODUCTION TO MACHINE LEARNING		hours			
		to Machine learning systems.					
	·	earning, Unsupervised Learning and Deductive Learning ural Networks	5.				
UNIT		Applications	8	hours			
- Im	age and fa	ce recognition,					
	ject recog						
		gnition besides Computer Vision,					
		and Robotics					
Course outcome: After completion of this course students will be able to							
CO	Learr	the fundamentals of AI with engineering perspectives.		K ₂			
CO 2		rstand concept of knowledge representation and predi- ransform the real-life information in different representat	•	K ₂			
CO 3		rstand state space and its searching strategies.		K ₂			
CO 4	CO 4 Understand machine learning concepts and range of problems that can be handled by machine learning.						

CO 5	Understand the concepts of face, object, speech recognition and automation & robotics.	K ₂
Text & F	Reference books	
1. Elaine	Rich, K. Knight, "Artificial Intelligence", 2/E, TMH, 1991.	
2. Andre	w C., Staugaard Jr., Robotics and AI: "An Introduction to Applied Machine	
Intelli	gence", Prentice Hall ,1987.	
3. S. Rus	ssell and P. Norvig, "Artificial Intelligence: A Modern Approach", 2/E, Pren	tice
Hall, 2	2003.	
4. K. Boy	yer, L. Stark, H. Bunke, "Applications of AI, Machine Vision and Robotics"	' World
Scient	ific Pub Co. , 1995.	
5. I. Brat	ko, "Prolog Programming for Artificial Intelligence", 3/E, Addison-Wesley,	, 2001.
6. C. M.	Bishop, "Pattern Recognition and Machine Learning", Springer, 2003.	

		M. TECH FIRST YEAR				
Cou	rse Code	AMTME0218	LTP	Credit		
	rse Title	Management Information System	300	3		
	rse objecti			1		
1	To make s	students Identify and understand the role o	f MIS in	business and		
	management		1 1 4 11 1			
2	^	roblems pertaining to conceptual information an	d detailing i	nformation of		
3	a system des	udents Evaluate and differentiate various infor	motion avat	ame and their		
3	economics.	ducents Evaluate and differentiate various infor	mation syste	enis and then		
4		Il be able to understand the strategic and pro	ect plannin	g and role of		
•		system in decision making.	eet plainin	g und role of		
5		udents integrate information system to ERP, a	nd other E	nterprise-wide		
		g-with ethics.		1		
Pre		The student should have knowledge of Manufact	uring scienc	e		
		Course Contents / Syllabus				
UN	IT-I Int	roduction to Flexible manufacturing sy	stem	8 hours		
Intro	oduction; Me	aning and definition of management information	n systems (N	MIS); Systems		
		MIS in facing increasing complexity in business a				
	-	mation systems design;Problem Definition; s	••••			
	•••	n constraints; Determining information needs;		•		
		ngalternative conceptual designs; Documenting the	ne conceptua	al designs.		
		ailing information systems design		8 hours		
		ation systems design; Informing and involving				
mana	agement ofM	IS; Identifying dominant and tradeoff criteria;	Subsystem	definition and		
sour						
		luation of information systems		8 hours		
syste	ems;Productio	formation systems; Basic information system n and operations information systems; Market onsystem etc.				
		rmation systems for decision making		8 hours		
		ems for decision making; Programmed and no	n-nrogramn	ned decisions:		
		cision support systems, Strategic and project plan				
UN	T-V Ent	erprise-wide information systems		8 hours		
		information systems; Integration with E	RP system			
	A	gration with external organizations; Virtu	•	zations; data		
ware	housing; Da	ta mining; OLAP(Online Analytical Process	•	ms, Business		
analy	ytics. Issues ir	ethics, crime, and security.	U / I			
Cou	irse outcom	e: After completion of this course student	ts will be ab	le to		
CO	1 Define N	IIS and its involvement in Business and Manager	nent	K ₂ , K ₃		
CO		and define the problems related to design of information system.	conceptual	and K3		
CO		Evaluate and differentiate various information system along with their K3 economics and utilization.				
	ccononn					
CO		and and implement information system for decision	on making.	K4		

Text books& Reference Books

- 1. Management Information Systems O' Brien, J Tata McGraw Hill
- 2. Management Information Systems W.S. Jawedker Tata McGraw Hill
- 3. Management Information Systems S Sadagopan Prentice Hall of India
- 4. An Information System for Modern Management R.G. Mudrick Pearson
- 5. Management Information Systems M. Jaiswal Oxford University Press

		M. TECH FIRST YEAR		
Course	Code	AMTME0219	LTP	Credit
Course		Flexible Manufacturing System	300	3
Course	objectiv	/e:		
1		vill learn the flexible manufacturing system.		
2	Student v	vill learn the data-based management system.		
3		vill understand the group technology.		
4		vill learn the coordinate measuring machine tool.		
5		vill understand the material requirement planning system	l.	
Duo noo	nisitos	The student should have be eviled as of Manufacturin		
rre-req	uisites:	The student should have knowledge of Manufacturir Course Contents / Syllabus	ig science	
UNIT-I	Int	roduction to Flexible manufacturing system	m	8 hours
		roduction to manufacturing system, different ty		
technolog handling system:	gy, FMS system, F Computer	stem: Components of an FMS, types of system, work stations. Material handling and storage sys MS layout configuration, Material handling equipm function, FMS data file, system reports planning publication and have fite.	tem: Func nent. Comj	tions of the outer control
		pplication and benefits.		0.1
	_	ibuted data processing in FMS processing in FMS: DBMS and their applications in		8 hours
data base	- Clampi	s in FMS –Integration of CAD and CAM - Part prog ng devices and fixtures data base. s – features of industrial robots - robot cell design an		
UNIT-I	II Grou	ıp Technology		8 hours
coding s Determin Just In Ti	ystem, M ing the be me and L	y: Part families, part classification and coding. Typ achine cell design: The composite part concept, est machine arrangement, benefits of group technolo ean Production: Lean Production and Waste in Man automation, work involvement.	types of gy.	cell design.
UNIT-I	V Intro	oduction of FMS		8 hours
work cen specificat Applicati	tre and a ion and so on of s uring dat	mposition of FMS- hierarchy of computer control ssembly lines – FMS supervisory computer contro election – trends. imulation – model of FMS– simulation soft a systems – data flow – FMS database systems	ol – types ware – 1	of software imitation –
UNIT-V		luction Planning and control systems		8 hours
Production production control,	on Plann on schedu inventory n principle	ing and control systems: Aggregate Production Pl le, Material Requirements and Planning, capacity control, extensions of MRP CMM types: con es - programming and operation-in cycle gauging	v planning ntact and	, shop floor non-contact
CO 1				K ₂ , K ₃
	Understa	and the components of flexible manufacturing system	.11	K ₂ , K ₃
CO 2		ne concept of data-based management system for i and CAM	ntegration	K3

CO 3	Understand the concept of part family formation and cell design.K3				
CO 4	Understand the concept of automated material handling system	K4			
CO 5	CO 5 Understand the different module of MRP and CMM				
Text	books& Reference Books				
1.	1. Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", Wiley Eastern Ltd., New				
	Age International Ltd., 1994.				
2.	Raouf, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems:				
	recentdevelopment", Elsevier Science, 1995.				
3.	3. Groover M.P., "Automation, Production Systems and Computer Integrated				
	Manufacturing", Prentice Hall of India Pvt., New Delhi, 1996.				
4.	Kalpakjian, "Manufacturing Engineering and Technology", Addison-We	sley			
	Publishing Co., 1995.				

		M. TECH FIRST YEAR				
Cour	se Code	AMTME0220 L T P	Credit			
	se Title	Machine Vision 300	3			
	se objectiv					
1		the concepts of Physics behind Digital Image Processing.				
2		the Methods of Image Acquisition.				
3	Ų	e different knowledge in different types image Processing.				
4		Developing knowledge of different types analysing the Captured Image.				
5	Implementi	ng at the idea about Machine Vision Applications.				
		Course Contents / Syllabus				
UNIT		NTRODUCTION	8 hours			
Block Machin	Diagram an	Machine vision and Computer Vision – Benefits of Machin and Function of Machine Vision System Implementation of stem – Physics of Light – Interactions of Light – Refraction and s Equation.	of Industrial			
UNIT	-II I	MAGE ACQUISITION	10 hours			
Specif Interfa Compu	cations and ce Architect	pes and Selection – Machine Vision Lenses and Opt Selection – Imaging Sensors – CCD and CMOS, Spec ures – Analog and Digital Cameras –Digital Camera Interface s, Specifications and Selection – Geometrical Image Formation.	eifications – es – Camera			
UNIT	-III I	MAGE PROCESSING	8 hours			
		oftware - Fundamentals of Digital Image - Image Acquisiti				
		in Spatial and Frequency Domain - Point Operation, T				
-		ng – Neighbourhood Operations, Image Smoothing and S	harpening –			
-		Binary Morphology – Colour image processing.	0.1			
UNIT		MAGE ANALYSIS – Region Features, Shape and Size Features – Texture	8 hours			
		g and Classification – 3D Machine Vision Techniques – Decision				
UNIT	-	ACHINE VISION APPLICATIONS	8 hours			
Machin Textile and S Survei	ne Vision A , Applicatio	Applications in Manufacturing, Electronics, Printing, Pha ns in Non-Visible Spectrum, Metrology, Vision Guided Robo ications – Agricultural, and Bio Medical Field, Augmen Metrics.	rmaceutical, otics – Field ted Reality,			
CO 1	Explain	the concepts of Physics behind Digital Image Processing.	K3			
CO 2	Illustrate	the Methods of Image Acquisition.	K2			
CO 3	Apply th	e different knowledge in different types image Processing.	K3			
CO 4	1	knowledge of different types analysing the Captured Image.	K4			
CO 5	Impleme	nt at the idea about Machine Vision Applications.	K4			

Text books

1. Alexander Horn berg, "Hand Book of Machine Vision", Wiley-VCH, 2006.

2. Davies E.R., "Machine Vision Theory, Algorithms and Practicalities", Elsevier, 2005.

Reference Books

1. NelloZuech, "Understanding and Applying Machine Vision", Marcel Decker, 2000.

2. Bruce Bachelor and Frederick Waltz, "Intelligent Machine Vision Techniques, Implementations and Applications", Springer-Verlag, 2001.

3. Rafael C. Gonzales, Richard. E. Woods and Steven L. Eddins, "Digital Image Processing Using MATLAB", McGraw Hill Education, 2014.

4. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Cengage Learning, 2014.

5. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", PHI Learning, 2011.

6. Chanda B. and Dutta Majumder D., "Digital Image Processing and Analysis", PHI Learning, 2011.

M. TECH FIRST YEAR							
Course	Code	AMTME0221 L T P	Credit				
Course		Rapid Manufacturing & Tooling 3 0 0	3				
Course							
1	Able to know the fundamentals of RP Systems & its evolution and the Process in RP and association of RP Systems with 3D modelling & Mesh						
2	Able to know the RP Systems, Process, Materials & Classifications						
3	Able to know and working with Mesh File & their formats like STL format, 3MF						
	format, OBJ formats. Conversion to Mesh files, their properties, operations,						
	storage, inspections & defects						
4	Able to	know the applications of RP Systems in various Fields					
		Course Contents / Syllabus					
UNIT-I	Ι	ntroduction:	4 hours				
		oments, Fundamentals of RP Systems and its Classification					
		otyping Process Chains, 3D Modelling and Mesh Gen					
Conversio	on and Tr	ansmission.					
UNIT-I	IF	RP Systems:	12 hours				
Liquid P	olymer H	Based Rapid Prototyping systems: SLA, Material Jetting,	Solid Input				
		apid Prototyping Systems: Laminated Object Manufacturing					
		Modelling Systems, Power Based Rapid Prototyping Syste	ms: Selective				
	-	ulti-Jet Fusion, Binder Jetting Systems.	1				
UNIT-I		RP Database & Design Optimization:	8 hours				
		Data Formats, STL Format, STL file problems, STL file r	epair, DfAM,				
		ation, Gcode for RP Systems					
UNIT-I		RP Applications:	8 hours				
		ies for Moulding, RP Applications in developing prototypes					
		dical fields, Development of bone replacements and tiss	ues, etc., RP				
Course		biological acceptability.e: After completion of this course students will be ab	le to				
	outcom	et inter completion of this course students will be ub					
	involvem	nd the fundamentals of RP Technologies and process nent in them	K1,K2				
	Understand the methodology to manufacture the products using RP K3, K4 technologies and study their applications, advantages and case studies						
CO 3	Understand the Design aspects and their respective challenges along K3, K4, K5 with the resolution for them						
CO 4	Understand the various applications of various RP Systems with case K3,K4 studies & Materials						
Text bo	oks		1				
		ng: Principles an Applications: Chee Kai Chua, Kah Fai Leo	ong, Chu Sing				
	ve Manuf	acturing Technologies: 3D Printing, Rapid Prototyping, and	Direct Digital				
		ent Stucker, David W. Rosen, Ian Gibson	2				
Referen	-						
-		uring: The Technologies and Applications of Rapid Prototypi	ng and Rapid				
Tooling	g: Pham, I	Duc, Dimov, S.S.					

- 2. Rapid Prototyping and Manufacturing: Fundamentals of Stereo Lithography: P. Jacobs
- 3. Rapid System Prototyping with FPGAs: Accelerating the Design Process: R.C. Cofer, Benjamin F. Harding
- 4. Rapid Prototyping of Digital Systems: Hamblen, James O., Hall, Tyson S., Furman, Michael D.

		M. TECH FIRST YEAR				
Course Code		AMTME0222 L T	Р	Credit		
Course Title		Hybrid Vehicle Technology 3 0	0	3		
Course ob						
		stand working of Electric Vehicles and recent trends.				
		how & aptitude towards future trends in Hybrid Electric V	vehicle	s		
	Understand the various energy storage devices					
	Understand the drive systems of hybrid vehicles					
		stand energy management strategies				
-		6, 6 6				
		Course Contents / Syllabus				
UNIT-I	Ι	ntroduction:	4	hours		
and Electric	Driv	brid Electric Vehicles Conventional Vehicles. Hybrid E e-trains: Basic concept of electric traction, introduction gies, power flow control in electric drive-train topologi	to var	ious electric		
UNIT-II	I	Electric Propulsion unit		12 hours		
Electric Pro	opuls	ion unit: Introduction to electric components used in h	nybrid	and electric		
vehicles, Co	onfigu	aration and control of DC Motor drives, Configuration	on and	control of		
		drives, configuration and control of Permanent Mag				
-		control of Switch Reluctance Motor drives, drive system	efficie	•		
UNIT-III		Energy Storage		8 hours		
Vehicles. Ba	attery	: Introduction to Energy Storage Requirements in Hy , Fuel Cell, Super Capacitor and Flywheel based energy ation of different energy storage devices.				
UNIT-IV	S	Sizing the drive system		8 hours		
(ICE), Sizing	g the	system: Matching the electric machine and the internal propulsion motor, sizing the power electronics, selecting nunications, supporting sub systems.				
UNIT-V	ŀ	Energy Management Strategies		8 hours		
hybrid and comparison management	elect of d t strat	ment Strategies: Introduction to energy management tric vehicles, classification of different energy mana ifferent energy management strategies, implementation egies. Case Studies: Design of a Hybrid Electric Vehicle (fehicle (BEV).	gemen issue	gies used in t strategies, s of energy		
Course ou	itcon	1e: After completion of this course students will be	able t	0		
		op the electric propulsion unit and its control for ation of electric vehicles.	K1,K	2		
(1)	Analyze different power converter topology used for electric K3, K4 vehicle application.					
CO 3 Io	dentif	y the principles of energy storage in hybrid vehicles	K3, K	4, K5		
	Analyze the drive systems sizing. K3,K4					
CO5 D	Develo	op the strategies for engine management.	K4			
Text book						
I CAL DUUK						

Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003 Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

Reference Books

James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003 Chris Mi, M. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, John Wiley & Sons Ltd., 2011